5.2) Sketching curves

Your turn

Sketch the following curves:

$$
r=4
$$

$$
r=6
$$

Sketch the following curve:

Your turn

Sketch the following curves:
$\theta=-\frac{3 \pi}{4}$
Sketch the following curves:

$$
\theta=\frac{3 \pi}{4}
$$

Your turn

Sketch the following curves: $r=\theta$

$$
r=3 \theta
$$

Sketch the following curves:
$r=2 \theta$

Your turn

Sketch the following curves:

$$
r=\cos \theta
$$

$$
r=3 \cos \theta
$$

Sketch the following curves:
$r=2 \cos \theta$

Graphs used with permission from DESMOS: https://www.desmos.com/

Your turn

Sketch the following curves:

$$
r=\sin \theta
$$

Sketch the following curves:

$$
r=2 \sin \theta
$$

$$
r=3 \sin \theta
$$

$$
r=a \sin \theta
$$

Your turn

Sketch the following curves:

$$
r=\sec \theta
$$

Sketch the following curves:
$r=2 \sec \theta$

$r=3 \sec \theta$

$$
r=a \sec \theta
$$

Your turn

Sketch the following curves:
$r=\operatorname{cosec} \theta$
$r=3 \operatorname{cosec} \theta$
Sketch the following curves:
$r=2 \operatorname{cosec} \theta$

$$
r=a \operatorname{cosec} \theta
$$

Your turn

Sketch the following curves:

$$
r=\sec \left(\theta-\frac{\pi}{4}\right)
$$

Sketch the following curves:

$$
r=2 \sec \left(\theta-\frac{\pi}{3}\right)
$$

$$
r=3 \sec \left(\theta+\frac{\pi}{6}\right)
$$

Your turn

Sketch the following curves:

$$
r=\operatorname{cosec}\left(\theta-\frac{\pi}{4}\right)
$$

$$
r=3 \operatorname{cosec}\left(\theta+\frac{\pi}{6}\right)
$$

Sketch the following curves:

$$
r=2 \operatorname{cosec}\left(\theta-\frac{\pi}{3}\right)
$$

$$
r=a \operatorname{cosec}(\theta-k)
$$

Your turn

Sketch the following curves:
$r=1+\cos \theta$

$$
r=3(1+\cos \theta)
$$

Sketch the following curves:

$$
r=a(1+\cos \theta)
$$

Your turn

Sketch the following curves:

$r=1-\cos \theta$

$$
r=3(1-\cos \theta)
$$

Sketch the following curves:

$$
r=a(1-\cos \theta)
$$

Your turn

Sketch the following curves:
$r=1+\sin \theta$

$$
r=3(1+\sin \theta)
$$

Sketch the following curves:

$$
r=2(1+\sin \theta)
$$

$$
r=a(1+\sin \theta)
$$

Your turn

Sketch the following curves:
$r=1-\sin \theta$

$$
r=3(1-\sin \theta)
$$

Sketch the following curves:
$r=2(1-\sin \theta)$

$$
r=a(1-\sin \theta)
$$

Your turn

Sketch the following curves:
$r=2 \sin 3 \theta$

$$
r=5 \sin 7 \theta
$$

Sketch the following curves:

$$
r=a \sin n \theta
$$

Your turn

Sketch the following curves:

$$
r=2 \cos 3 \theta
$$

$$
r=5 \cos 7 \theta
$$

Sketch the following curves:
$r=3 \cos 5 \theta$

$$
r=a \cos n \theta
$$

Your turn

Sketch the following curves:
$r^{2}=16 \cos 2 \theta$

$$
r^{2}=9 \cos 2 \theta
$$

$r^{2}=4 \cos 2 \theta$

$$
r^{2}=a^{2} \cos 2 \theta
$$

Your turn

Sketch the following curves:
$r^{2}=16 \sin 2 \theta$

$$
r^{2}=9 \sin 2 \theta
$$

Sketch the following curves:
$r^{2}=4 \sin 2 \theta$

$$
r^{2}=a^{2} \sin 2 \theta
$$

Your turn

Sketch the following curves:
$r^{2}=16 \cos \theta$
$r^{2}=9 \cos \theta$

Sketch the following curves:
$r^{2}=4 \cos \theta$

$$
r^{2}=a^{2} \cos \theta
$$

Your turn

Sketch the following curves:

$$
r^{2}=16 \sin \theta
$$

$$
r^{2}=9 \sin \theta
$$

$r^{2}=4 \sin \theta$

$r^{2}=a^{2} \sin 2 \theta$

Your turn

$$
r=6(3+3 \cos \theta)
$$

Sketch:

$$
r=a(2+2 \cos \theta)
$$

Sketches with intercepts and axes labelled. General shapes:

$$
r=5(3+2 \cos \theta)
$$

$$
r=4(3+\cos \theta)
$$

Graphs used with permission from DESMOS: https://www.desmos.com/

Your turn

$$
r=6(3+3 \sin \theta)
$$

Sketch:

$$
r=a(2+2 \sin \theta)
$$

Sketches with intercepts and axes labelled. General shapes:

$$
r=5(3+2 \sin \theta)
$$

$$
r=4(3+\sin \theta)
$$

Graphs used with permission from DESMOS: https://www.desmos.com/

Your turn

Show on an Argand diagram the locus of points given by the values of z satisfying $|z+4+3 i|=5$

Show that this locus of points can be represented by the polar curve $r=-8 \cos \theta-6 \sin \theta$

Show on an Argand diagram the locus of points given by the values of z satisfying $|z-3-4 i|=5$

Show that this locus of points can be represented by the polar curve $r=6 \cos \theta+8 \sin \theta$

Shown

