Core Pure 1 Volumes of Revolution

Chapter Overview

- **1**: Find the volume when a curve is rotated around the *x*-axis.
- **2**: Find the volume when a curve is rotated around the *y*-axis.
- 3: Find more complex volumes by adding/subtracting.

5 Further calculus	5.1	Derive formulae for and calculate volumes of revolution.	Both $\pi \int y^2 dx$ and $\pi \int x^2 dy$ are required. Students should be able to find a volume of revolution given either Cartesian
			equations or parametric equations.

Revolving around the x-axis

 $\int_{a}^{b} y \, dx$ gives the area bounded between y = f(x), x = a, x = b and the x-axis.

If we split up the area into thin rectangular strips, each with width dx and each with height the y = f(x)for that particular value of x. Each has area $f(x) \times dx$.

If we had 'discrete' strips, the total area would be:

$$\Sigma_{x=a}^b \left(f(x) \, dx \right)$$

But because the strips are infinitely small and we have to think continuously, we use \int instead of Σ .

Integration therefore can be thought of as a continuous version of summation.

Examples

1. The region R is bounded by the y-axis, the curve with equation

$$y = \sqrt{(6x^2 - 3x + 2)}$$

and the lines x = 1 and x = 2. The region is rotated through 360° about the *x*-axis. Find the exact volume of the solid generated.

2. The diagram shows the region R which is bounded by the x-axis, the y-axis and the curve with equation $y = 9 - x^2$. The region is rotated through 360° about the x-axis. Find the exact volume of the solid generated.

Test Your Understanding

$$y = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}}$$

The finite region *R* which is bounded by the curve *C*, the *x*-axis and the line x = 125 is shown shaded in Figure 3. This region is rotated through 360° about the *x*-axis to form a solid of revolution.

Use calculus to find the exact value of the volume of the solid of revolution. (5)

