Core Pure 1

Volumes of Revolution

Chapter Overview

1: Find the volume when a curve is rotated around the x-axis.
2: Find the volume when a curve is rotated around the y-axis.
3: Find more complex volumes by adding/subtracting.

5	5.1	Derive formulae for and calculate volumes of revolution.	Both $\pi \int y^{2} \mathrm{~d} x$ and $\pi \int x^{2} \mathrm{~d} y$ are
required. Students should be able to find a			
volume of revolution given either Cartesian			
equations or parametric equations.			

Revolving around the x-axis

$\int_{a}^{b} y d x$ gives the area bounded between $y=f(x), x=a, x=b$ and the x axis.

If we split up the area into thin rectangular strips, each with width $d x$ and each with height the $y=f(x)$ for that particular value of x. Each has area $f(x) \times d x$.

If we had 'discrete' strips, the total area would be:

$$
\sum_{x=a}^{b}(f(x) d x)
$$

But because the strips are infinitely small and we have to think continuously, we use \int instead of Σ.
Integration therefore can be thought of as a continuous version of summation.

Now suppose we spun the line $y=f(x)$ about the x axis to form a solid (known as a volume of revolution)

Examples

1. The region R is bounded by the y-axis, the curve with equation

$$
y=\sqrt{\left(6 x^{2}-3 x+2\right)}
$$

and the lines $x=1$ and $x=2$. The region is rotated through 360° about the x-axis. Find the exact volume of the solid generated.

2. The diagram shows the region R which is bounded by the x-axis, the y-axis and the curve with equation $y=9-x^{2}$. The region is rotated through 360° about the x-axis. Find the exact volume of the solid generated.

Test Your Understanding

$$
y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}
$$

The finite region R which is bounded by the curve C, the x axis and the line $x=125$ is shown shaded in Figure 3. This region is rotated through 360° about the x-axis to form a solid of revolution.

Use calculus to find the exact value of the volume of the
 solid of revolution. (5)

