5.1) Volumes of revolution around the x-axis

Your turn

A sketch of $y=4-x^{2}$ is shown. The region R is bounded by the x axis, the y-axis and the curve with equation $y=4-x^{2}$. The region is rotated through 360° about the x axis. Find the exact volume of the solid generated.

A sketch of $y=9-x^{2}$ is shown. The region R is bounded by the x axis, the y-axis and the curve with equation $y=9-x^{2}$. The region is rotated through 360° about the x axis. Find the exact volume of the solid generated.

648π

Your turn

Find the exact volume of the solid generated when the curve is rotated through 360° about the x-axis between the given limits:

$$
y=1-\frac{1}{x^{2}} \text { between } x=1 \text { and } x=4
$$

Find the exact volume of the solid generated when the curve is rotated through 360° about the x-axis between the given limits:

$$
y=1+\frac{1}{x^{2}} \text { between } x=1 \text { and } x=2
$$

$$
\frac{55}{24} \pi
$$

Worked example

Your turn

A finite region is bounded by the curve with equation $y=\left(x^{\frac{3}{2}}-8\right)^{\frac{1}{2}}$, the x-axis and the line $x=$ 9. This region is rotated 360° about the x-axis to form a solid of revolution. Find the exact value of the volume of the solid of revolution

A finite region is bounded by the curve with
equation $y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$, the x-axis and the line $x=$ 125. This region is rotated 360° about the x-axis to form a solid of revolution. Find the exact value of the volume of the solid of revolution

Your turn

A curve has equation $7 y^{2}-x^{3}=2 x-12$. A finite region is bounded by the curve, the x-axis and the line $x=5$. The region is rotated about the x-axis to generate a solid of revolution. Find the volume of the solid generated.

A curve has equation $5 y^{2}-x^{3}=2 x-3$. A finite region is bounded by the curve, the x-axis and the line $x=4$. The region is rotated about the x-axis to generate a solid of revolution. Find the volume of the solid generated.

$$
\frac{279}{20} \pi
$$

A curve has equation $y=x \sqrt{9-x^{2}}$. A finite region is bounded by the curve, the x-axis and the line $x=a$ where $0<a<3$. The region is rotated through 2π radians to generate a solid of revolution with volume $\frac{1025 \pi}{32}$. Find the value of a

A curve has equation $y=x \sqrt{4-x^{2}}$. A finite region is bounded by the curve, the x-axis and the line $x=a$ where $0<a<2$. The region is rotated through 2π radians to generate a solid of revolution with volume $\frac{657 \pi}{160}$. Find the value of a

$$
a=\frac{1}{2}
$$

