5.1) Polar coordinates and equations

Worked example	Your turn
Convert from Cartesian to polar coordinates: $(4, -3)$	Convert from Cartesian to polar coordinates: (3, 4)
	(5,0.927)
(-5,12)	(5, -12) (13, -1.176)
(√3, 1)	$\begin{pmatrix} (-\sqrt{3}, -1) \\ (2, \frac{7\pi}{6}) \text{ or } (2, -\frac{5\pi}{6}) \end{pmatrix}$

Worked example	Your turn
Convert from polar to Cartesian coordinates: $\left(8, \frac{-5\pi}{3}\right)$	Convert from polar to Cartesian coordinates: $\left(10, \frac{4\pi}{3}\right)$ $\left(-5, 5\sqrt{3}\right)$
$\left(4,\frac{\pi}{3}\right)$	$\begin{pmatrix} 8, \frac{2\pi}{3} \end{pmatrix}$ $(-4, 4\sqrt{3})$
$(3, \frac{\pi}{2})$	(2,π) (-2,0)

Worked example	Your turn
Find Cartesian equations for the following curves: r = 4	Find Cartesian equations for the following curves: r = 5
	$x^2 + y^2 = 25$
$r = 3 + \cos 4\theta$	$r = 2 + \cos 2\theta$ $(x^2 + y^2)^{\frac{3}{2}} = 3x^2 + y^2$
$r^4 = \sin 2\theta, \qquad 0 < \theta \le \frac{\pi}{2}$	$r^{2} = \sin 2\theta, \qquad 0 < \theta \le \frac{\pi}{2}$ $(x^{2} + y^{2})^{2} = 2xy$

Worked example	Your turn
Find Cartesian equations for the following curves: $r = 5 \sec \theta$	Find Cartesian equations for the following curves: $r = 3 \sec \theta$
	x = 3
$r = 3cosec \ \theta$	$r = 5cosec \ \theta$ $y = 5$
$r = 4\cos\theta$	$r = 2\cos\theta$ $x^2 + y^2 = 2x \text{ or } (x - 1)^2 + y^2 = 1$
$r = 2\sin\theta$	$r = 4 \sin \theta$ $x^2 + y^2 = 4y \text{ or } x^2 + (y - 2)^2 = 4$

Worked example	Your turn
Find Cartesian equations for the following curves: $r = 8 \cot \theta \csc \theta$	Find Cartesian equations for the following curves: $r = 4 \tan \theta \sec \theta$
	$x^2 = 4y \text{ or } y = \frac{x^2}{4}$
$r^2 = 1 + \cot^2 \theta$	$r^2 = 1 + \tan^2 \theta$
	$x^2 = 1 \text{ or } x = \pm 1$

Worked example	Your turn
Find polar equations for the following curves: $y^2 = 2x$	Find polar equations for the following curves: $y^2 = 4x$
	$r = 4 \cot \theta \ cosec \ \theta$
$x^2 - y^2 = 10$	$x^2 - y^2 = 5$ $r^2 = 5 \sec 2\theta$
$y\sqrt{2} = x + 8$	$y\sqrt{3} = x + 4$ $r = 2cosec \left(\theta - \frac{\pi}{6}\right)$

Your turn
Find polar equations for the following curves: y = 2x
$\tan \theta = 2$
$xy = 4$ $r^2 = 8 \operatorname{cosec} 2\theta$
$y = -\sqrt{3}x + 4$ $r = 2 \operatorname{cosec} \left(\theta + \frac{\pi}{3}\right)$

Worked example	Your turn
Find polar equations for the following curves: $x^2 + y^2 - 4x = 0$	Find polar equations for the following curves: $x^{2} + y^{2} - 2x = 0$
	$r = 2\cos\theta$
$(x + y)^2 = 8$	$(x+y)^2 = 4$ $r^2 = \frac{4}{1+\sin 2\theta}$
x - y = 5	$x - y = 3$ $r = \frac{3}{\sqrt{2}}\sec\left(\theta + \frac{\pi}{4}\right)$