5.1) Polar coordinates and equations

Convert from Cartesian to polar coordinates:
$(4,-3)$
$(-5,12)$
$(\sqrt{3}, 1)$

Convert from Cartesian to polar coordinates:
$(3,4)$
$(5,0.927)$
$(5,-12)$
$(13,-1.176)$

$$
\begin{gathered}
(-\sqrt{3},-1) \\
\left(2, \frac{7 \pi}{6}\right) \text { or }\left(2,-\frac{5 \pi}{6}\right)
\end{gathered}
$$

Your turn

Convert from polar to Cartesian coordinates:

$$
\begin{gathered}
\left(10, \frac{4 \pi}{3}\right) \\
(-5,5 \sqrt{3})
\end{gathered}
$$

$$
\left(8, \frac{2 \pi}{3}\right)
$$

$$
(-4,4 \sqrt{3})
$$

$(2, \pi)$

$$
(-2,0)
$$

Find Cartesian equations for the following curves: $r=4$

$$
r=3+\cos 4 \theta
$$

$$
r^{4}=\sin 2 \theta, \quad 0<\theta \leq \frac{\pi}{2}
$$

Find Cartesian equations for the following curves:

$$
\begin{gathered}
r=5 \\
x^{2}+y^{2}=25 \\
r=2+\cos 2 \theta \\
\left(x^{2}+y^{2}\right)^{\frac{3}{2}}=3 x^{2}+y^{2} \\
r^{2}=\sin 2 \theta, \quad 0<\theta \leq \frac{\pi}{2} \\
\left(x^{2}+y^{2}\right)^{2}=2 x y
\end{gathered}
$$

Find Cartesian equations for the following curves:

$$
r=5 \sec \theta
$$

$$
r=3 \operatorname{cosec} \theta
$$

$$
r=4 \cos \theta
$$

$$
r=2 \sin \theta
$$

Find Cartesian equations for the following curves:

$$
r=3 \sec \theta
$$

$$
x=3
$$

$$
r=5 \operatorname{cosec} \theta
$$

$$
y=5
$$

$$
r=2 \cos \theta
$$

$$
x^{2}+y^{2}=2 x \text { or }(x-1)^{2}+y^{2}=1
$$

$$
r=4 \sin \theta
$$

$$
x^{2}+y^{2}=4 y \text { or } x^{2}+(y-2)^{2}=4
$$

Find Cartesian equations for the following curves:
$r=8 \cot \theta \operatorname{cosec} \theta$

$$
r^{2}=1+\cot ^{2} \theta
$$

Find Cartesian equations for the following curves:

$$
r=4 \tan \theta \sec \theta
$$

$$
x^{2}=4 y \text { or } y=\frac{x^{2}}{4}
$$

$$
r^{2}=1+\tan ^{2} \theta
$$

$$
x^{2}=1 \text { or } x= \pm 1
$$

Your turn

Find polar equations for the following curves:
$y^{2}=2 x$

$$
x^{2}-y^{2}=10
$$

Find polar equations for the following curves:

$$
y \sqrt{2}=x+8
$$

$$
\begin{gathered}
y^{2}=4 x \\
r=4 \cot \theta \operatorname{cosec} \theta \\
x^{2}-y^{2}=5 \\
r^{2}=5 \sec 2 \theta \\
\\
y=\sqrt{3}=x+4 \\
2 \operatorname{cosec}\left(\theta-\frac{\pi}{6}\right)
\end{gathered}
$$

Your turn

Find polar equations for the following curves:

$$
y=4 x
$$

$$
x y=8
$$

$$
r^{2}=8 \operatorname{cosec} 2 \theta
$$

$$
y=-\sqrt{2} x+4
$$

Find polar equations for the following curves:
$y=2 x$
$\tan \theta=2$
$x y=4$

$$
y=-\sqrt{3} x+4
$$

$$
r=2 \operatorname{cosec}\left(\theta+\frac{\pi}{3}\right)
$$

Your turn

Find polar equations for the following curves:

$$
x^{2}+y^{2}-4 x=0
$$

$$
(x+y)^{2}=8
$$

Find polar equations for the following curves:

$$
\begin{gathered}
x^{2}+y^{2}-2 x=0 \\
r=2 \cos \theta
\end{gathered}
$$

$$
(x+y)^{2}=4
$$

$$
r^{2}=\frac{4}{1+\sin 2 \theta}
$$

$$
x-y=5
$$

$$
x-y=3
$$

$$
r=\frac{3}{\sqrt{2}} \sec \left(\theta+\frac{\pi}{4}\right)
$$

