5) Volumes of revolution

5.1) Volumes of revolution around the x-axis

5.2) Volumes of revolution around the *y*-axis

5.3) Adding and subtracting volumes

5.4) Modelling with volumes of revolution

5.1) Volumes of revolution around the *x*-axis Chapter CONTENTS

Worked example

A sketch of $y = 4 - x^2$ is shown. The region *R* is bounded by the *x*-axis, the *y*-axis and the curve with equation $y = 4 - x^2$. The region is rotated through 360° about the *x*-axis. Find the exact volume of the solid generated.

Your turn

A sketch of $y = 9 - x^2$ is shown. The region *R* is bounded by the *x*-axis, the *y*-axis and the curve with equation $y = 9 - x^2$. The region is rotated through 360° about the *x*-axis. Find the exact volume of the solid generated.

 $\frac{648\pi}{5}$

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

Worked example	Your turn
Find the exact volume of the solid generated when the curve is rotated through 360° about the <i>x</i> -axis between the given limits: $y = 1 - \frac{1}{x^2}$ between $x = 1$ and $x = 4$	Find the exact volume of the solid generated when the curve is rotated through 360° about the <i>x</i> -axis between the given limits: $y = 1 + \frac{1}{x^2}$ between $x = 1$ and $x = 2$
	$\frac{55}{24}\pi$

Worked example	Your turn
A finite region is bounded by the curve with equation $y = (x^{\frac{3}{2}} - 8)^{\frac{1}{2}}$, the <i>x</i> -axis and the line $x =$ 9. This region is rotated 360° about the <i>x</i> -axis to form a solid of revolution. Find the exact value of the volume of the solid of revolution	A finite region is bounded by the curve with equation $y = (x^{\frac{2}{3}} - 9)^{\frac{1}{2}}$, the <i>x</i> -axis and the line $x = 125$. This region is rotated 360° about the <i>x</i> -axis to form a solid of revolution. Find the exact value of the volume of the solid of revolution
	4236π

Worked example	Your turn
A curve has equation $7y^2 - x^3 = 2x - 12$. A finite	A curve has equation $5y^2 - x^3 = 2x - 3$. A finite
region is bounded by the curve, the <i>x</i> -axis and the	region is bounded by the curve, the <i>x</i> -axis and the
line $x = 5$. The region is rotated about the <i>x</i> -axis to	line $x = 4$. The region is rotated about the <i>x</i> -axis to
generate a solid of revolution. Find the volume of	generate a solid of revolution. Find the volume of
the solid generated.	the solid generated.

 $\frac{279}{20}\pi$

Worked example	Your turn
A curve has equation $y = x\sqrt{9 - x^2}$. A finite region is bounded by the curve, the <i>x</i> -axis and the line x = a where $0 < a < 3$. The region is rotated through 2π radians to generate a solid of revolution with volume $\frac{1025\pi}{32}$. Find the value of a	A curve has equation $y = x\sqrt{4 - x^2}$. A finite region is bounded by the curve, the <i>x</i> -axis and the line x = a where $0 < a < 2$. The region is rotated through 2π radians to generate a solid of revolution with volume $\frac{657\pi}{160}$. Find the value of a $a = \frac{1}{2}$
	2

5.2) Volumes of revolution around the *y*-axis Chapter CONTENTS

Worked example	Your turn
A curve has equation $y = \sqrt{x - 2}$. A finite region is bounded by the curve, the y-axis and the lines $y =$ 1 and $y = 4$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.	A curve has equation $y = \sqrt{x - 1}$. A finite region is bounded by the curve, the y-axis and the lines $y = 1$ and $y = 3$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.
	$\frac{1016\pi}{15}$

Worked example	Your turn
A curve has equation $y = \sqrt[3]{3x + 1}$. A finite region is bounded by the curve, the <i>y</i> -axis and the lines y = 2 and $y = 5$. The region is rotated through 360° about the <i>y</i> -axis. Find the volume of the solid generated.	A curve has equation $y = \sqrt[3]{2x + 1}$. A finite region is bounded by the curve, the <i>y</i> -axis and the lines y = 2 and $y = 4$. The region is rotated through 360° about the <i>y</i> -axis. Find the volume of the solid generated.
	$\frac{7715\pi}{14}$

Worked example	Your turn
 A curve has equation x = y² - 4y + 8. A finite region is bounded by the curve, the <i>y</i>-axis and the lines y = 1 and y = 5. a) Find the area of the region b) The region is rotated through 360° about the <i>y</i>-axis. Find the volume of the solid generated. 	A curve has equation $x = y^2 - 6y + 10$. A finite region is bounded by the curve, the <i>y</i> -axis and the lines $y = 1$ and $y = 4$. a) Find the area of the region b) The region is rotated through 360° about the <i>y</i> -axis. Find the volume of the solid generated. a) 6 b) $\frac{78}{5}\pi$

Worked example	Your turn
$f(x) = x^2 - 6x + 9, x \ge 3$ A finite region is bounded by the curve $y = f(x)$, the y-axis and the lines $y = 1$ and $y = 4$ The region is rotated through 2π radians about the y-axis. Find the exact volume of the solid generated.	$f(x) = x^2 - 2x + 1, x \ge 1$ A finite region is bounded by the curve $y = f(x)$, the y-axis and the lines $y = 1$ and $y = 9$ The region is rotated through 2π radians about the y-axis. Find the exact volume of the solid generated.
	248

$$\frac{248}{3}\pi$$

Worked example	Your turn
A curve has equation $y^2 = \frac{1}{3x+2}$ A finite region is bounded by the curve $y = f(x)$, the <i>y</i> -axis and the line $y = 5$ The region is rotated through 2π radians about the <i>y</i> -axis. Find the volume of the solid generated.	A curve has equation $y^2 = \frac{1}{2x+1}$ A finite region is bounded by the curve $y = f(x)$, the y-axis and the line $y = 4$ The region is rotated through 2π radians about the y-axis. Find the volume of the solid generated.
	$\frac{117}{256}\pi$

5.3) Adding and subtracting volumes Chapter CONTENTS

Worked example	Your turn
A finite region is bounded by the curve with equation $y = x^3 + 1$, the line $y = 3 - x$ and the x and y -axes. A solid is created by rotating the region 360° about the x -axis. Find the volume of this solid.	A finite region is bounded by the curve with equation $y = x^3 + 2$, the line $y = 5 - 2x$ and the x and y -axes. A solid is created by rotating the region 360° about the x -axis. Find the volume of this solid.
	$\frac{135\pi}{14}$

Worked example	Your turn
A finite region is bounded by the curves with	A finite region is bounded by the curves with
equations $y = \sqrt{x}$ and $y = \frac{1}{27x}$ and the line $x = 2$.	equations $y = \sqrt{x}$ and $y = \frac{1}{8x}$ and the line $x = 1$.
The region is rotated through 360° about the <i>x</i> -	The region is rotated through 360° about the <i>x</i> -
axis. Find the exact volume of the solid generated.	axis. Find the exact volume of the solid generated.

 $\frac{27\pi}{64}$

Worked example	Your turn
The area between the lines with equations $y = x$ and $y = \sqrt{x}$, where $x \ge 0$ is rotated 360° about the <i>x</i> -axis. Determine the volume of the solid generated.	The area between the lines with equations $y = x$ and $y = \sqrt[3]{x}$, where $x \ge 0$ is rotated 360° about the <i>x</i> -axis. Determine the volume of the solid generated.
	$\frac{4\pi}{15}$
	15

5.4) Modelling with volumes of revolution Chapter CONTENTS

Worked example	Your turn
 A manufacturer wants to cast a prototype for a new design for a lightbulb out of glass. A region is used as a model for the cross-section of the lightbulb. The region is bounded by the <i>x</i>-axis and the curve with equation y = k - 60x², and will be rotated around the <i>y</i>-axis. Each unit on the coordinate axes represents 1cm. (a) Suggest a suitable value for k. (b) Use your value of k to estimate the volume of glass needed to make the prototype. (c) State one limitation of this model. 	A manufacturer wants to cast a prototype for a new design for a pen barrel out of solid resin. A region is used as a model for the cross-section of the pen barrel. The region is bounded by the <i>x</i> -axis and the curve with equation $y = k - 100x^2$, and will be rotated around the <i>y</i> -axis. Each unit on the coordinate axes represents 1cm. (a) Suggest a suitable value for <i>k</i> . (b) Use your value of <i>k</i> to estimate the volume of resin needed to make the prototype. (c) State one limitation of this model. (a) $k = 10$ ($10 \le k \le 15$ sensible) (b) $1.57cm^3$ (3 sf) (c) The cross-section of the pen unlikely to match the curve exactly

Worked example	Your turn
Use integration to show that the volume of a cylinder is $V = \pi r^2 h$	Use integration to show that the volume of a cone is $V = \frac{1}{3}\pi r^2 h$ Shown
Use integration to show that the volume of a sphere is $V = \frac{4}{3}\pi r^3$	