5) Volumes of revolution

5.1) Volumes of revolution around the x-axis
5.2) Volumes of revolution around the y-axis
5.3) Adding and subtracting volumes
5.4) Modelling with volumes of revolution

Your turn

A sketch of $y=4-x^{2}$ is shown. The region R is bounded by the x axis, the y-axis and the curve with equation $y=4-x^{2}$. The region is rotated through 360° about the x axis. Find the exact volume of the solid generated.

A sketch of $y=9-x^{2}$ is shown. The region R is bounded by the x axis, the y-axis and the curve with equation $y=9-x^{2}$. The region is rotated through 360° about the x axis. Find the exact volume of the solid generated.

648π

Your turn

Find the exact volume of the solid generated when the curve is rotated through 360° about the x-axis between the given limits:

$$
y=1-\frac{1}{x^{2}} \text { between } x=1 \text { and } x=4
$$

Find the exact volume of the solid generated when the curve is rotated through 360° about the x-axis between the given limits:

$$
y=1+\frac{1}{x^{2}} \text { between } x=1 \text { and } x=2
$$

$$
\frac{55}{24} \pi
$$

Worked example

Your turn

A finite region is bounded by the curve with equation $y=\left(x^{\frac{3}{2}}-8\right)^{\frac{1}{2}}$, the x-axis and the line $x=$ 9. This region is rotated 360° about the x-axis to form a solid of revolution. Find the exact value of the volume of the solid of revolution

A finite region is bounded by the curve with
equation $y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$, the x-axis and the line $x=$ 125. This region is rotated 360° about the x-axis to form a solid of revolution. Find the exact value of the volume of the solid of revolution

Your turn

A curve has equation $7 y^{2}-x^{3}=2 x-12$. A finite region is bounded by the curve, the x-axis and the line $x=5$. The region is rotated about the x-axis to generate a solid of revolution. Find the volume of the solid generated.

A curve has equation $5 y^{2}-x^{3}=2 x-3$. A finite region is bounded by the curve, the x-axis and the line $x=4$. The region is rotated about the x-axis to generate a solid of revolution. Find the volume of the solid generated.

$$
\frac{279}{20} \pi
$$

A curve has equation $y=x \sqrt{9-x^{2}}$. A finite region is bounded by the curve, the x-axis and the line $x=a$ where $0<a<3$. The region is rotated through 2π radians to generate a solid of revolution with volume $\frac{1025 \pi}{32}$. Find the value of a

A curve has equation $y=x \sqrt{4-x^{2}}$. A finite region is bounded by the curve, the x-axis and the line $x=a$ where $0<a<2$. The region is rotated through 2π radians to generate a solid of revolution with volume $\frac{657 \pi}{160}$. Find the value of a

$$
a=\frac{1}{2}
$$

5.2) Volumes of revolution around the \boldsymbol{y}-axis Chapter CONTENTS

Your turn

A curve has equation $y=\sqrt{x-2}$. A finite region is bounded by the curve, the y-axis and the lines $y=$ 1 and $y=4$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.

A curve has equation $y=\sqrt{x-1}$. A finite region is bounded by the curve, the y-axis and the lines $y=$ 1 and $y=3$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.

Your turn

A curve has equation $y=\sqrt[3]{3 x+1}$. A finite region is bounded by the curve, the y-axis and the lines $y=2$ and $y=5$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.

A curve has equation $y=\sqrt[3]{2 x+1}$. A finite region is bounded by the curve, the y-axis and the lines $y=2$ and $y=4$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.
7715π
14

Your turn

A curve has equation $x=y^{2}-4 y+8$. A finite region is bounded by the curve, the y-axis and the lines $y=1$ and $y=5$.
a) Find the area of the region
b) The region is rotated through 360° about the y-axis. Find the volume of the solid generated.

A curve has equation $x=y^{2}-6 y+10$. A finite region is bounded by the curve, the y-axis and the lines $y=1$ and $y=4$.
a) Find the area of the region
b) The region is rotated through 360° about the y-axis. Find the volume of the solid generated.
a) 6
b) $\frac{78}{5} \pi$

Worked example

Your turn

$$
f(x)=x^{2}-6 x+9, x \geq 3
$$

$$
f(x)=x^{2}-2 x+1, x \geq 1
$$

A finite region is bounded by the curve $y=f(x)$, the y-axis and the lines $y=1$ and $y=4$ The region is rotated through 2π radians about the y-axis. Find the exact volume of the solid generated.

Your turn

A curve has equation $y^{2}=\frac{1}{2 x+1}$
A finite region is bounded by the curve $y=f(x)$, the y-axis and the line $y=4$
The region is rotated through 2π radians about the y-axis. Find the volume of the solid generated.

$$
\frac{117}{256} \pi
$$

5.3) Adding and subtracting volumes Chapter CONTENTS

Your turn

A finite region is bounded by the curve with equation $y=x^{3}+1$, the line $y=3-x$ and the x and y-axes.
A solid is created by rotating the region 360° about the x-axis. Find the volume of this solid.

A finite region is bounded by the curve with equation $y=x^{3}+2$, the line $y=5-2 x$ and the x and y-axes.
A solid is created by rotating the region 360° about the x-axis. Find the volume of this solid.
$\frac{135 \pi}{14}$

Your turn

A finite region is bounded by the curves with equations $y=\sqrt{x}$ and $y=\frac{1}{27 x}$ and the line $x=2$. The region is rotated through 360° about the x axis. Find the exact volume of the solid generated.
equations $y=\sqrt{x}$ and $y=\frac{1}{8 x}$ and the line $x=1$. The region is rotated through 360° about the x axis. Find the exact volume of the solid generated.

$$
\frac{27 \pi}{64}
$$

Your turn

The area between the lines with equations $y=x$ and $y=\sqrt{x}$, where $x \geq 0$ is rotated 360° about the x-axis. Determine the volume of the solid generated.

The area between the lines with equations $y=x$ and $y=\sqrt[3]{x}$, where $x \geq 0$ is rotated 360° about the x-axis. Determine the volume of the solid generated.

$$
4 \pi
$$

5.4) Modelling with volumes of revolution Chapter CONTENTS

Worked example

Your turn

A manufacturer wants to cast a prototype for a new design for a lightbulb out of glass. A region is used as a model for the cross-section of the lightbulb. The region is bounded by the x-axis and the curve with equation $y=$ $k-60 x^{2}$, and will be rotated around the y-axis. Each unit on the coordinate axes represents 1 cm .
(a) Suggest a suitable value for k.
(b) Use your value of k to estimate the volume of glass needed to make the prototype.
(c) State one limitation of this model.

A manufacturer wants to cast a prototype for a new design for a pen barrel out of solid resin. A region is used as a model for the cross-section of the pen barrel. The region is bounded by the x-axis and the curve with equation $y=k-100 x^{2}$, and will be rotated around the y axis. Each unit on the coordinate axes represents 1 cm .
(a) Suggest a suitable value for k.
(b) Use your value of k to estimate the volume of resin needed to make the prototype.
(c) State one limitation of this model.
(a) $k=10(10 \leq k \leq 15$ sensible)
(b) $1.57 \mathrm{~cm}^{3}$ (3 sf)
(c) The cross-section of the pen unlikely to match
the curve exactly

Your turn

Use integration to show that the volume of a cylinder is $V=\pi r^{2} h$

Use integration to show that the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$

