5) Polar coordinates

5.1) Polar coordinates and equations

5.2) Sketching curves

5.3) Area enclosed by a polar curve

5.4) Tangents to polar curves

5.1) Polar coordinates and equations Chapter CONTENTS

Worked example	Your turn
Convert from Cartesian to polar coordinates: $(4, -3)$	Convert from Cartesian to polar coordinates: (3, 4)
	(5,0.927)
(-5,12)	(5, -12) (13, -1.176)
(√3,1)	$(-\sqrt{3}, -1)$ $(2, \frac{7\pi}{6})$ or $(2, -\frac{5\pi}{6})$

Worked example	Your turn
Convert from polar to Cartesian coordinates: $\left(8, \frac{-5\pi}{3}\right)$	Convert from polar to Cartesian coordinates: $\left(10, \frac{4\pi}{3}\right)$ $\left(-5, 5\sqrt{3}\right)$
$\left(4,\frac{\pi}{3}\right)$	$\left(8,\frac{2\pi}{3}\right)$ $\left(-4,4\sqrt{3}\right)$
$(3, \frac{\pi}{2})$	(2,π) (-2,0)

Worked example	Your turn
Find Cartesian equations for the following curves: r = 4	Find Cartesian equations for the following curves: r = 5
	$x^2 + y^2 = 25$
$r = 3 + \cos 4\theta$	$r = 2 + \cos 2\theta$ $(x^{2} + y^{2})^{\frac{3}{2}} = 3x^{2} + y^{2}$
$r^4 = \sin 2\theta, \qquad 0 < \theta \le \frac{\pi}{2}$	$r^{2} = \sin 2\theta, \qquad 0 < \theta \le \frac{\pi}{2}$ $(x^{2} + y^{2})^{2} = 2xy$

Worked example	Your turn
Find Cartesian equations for the following curves: $r = 5 \sec \theta$	Find Cartesian equations for the following curves: $r = 3 \sec \theta$
	x = 3
$r = 3cosec \ \theta$	$r = 5cosec \ \theta$ $y = 5$
$r = 4\cos\theta$	$r = 2\cos\theta$ $x^2 + y^2 = 2x \text{ or } (x - 1)^2 + y^2 = 1$
$r = 2\sin\theta$	$r = 4 \sin \theta$ $x^2 + y^2 = 4y \text{ or } x^2 + (y - 2)^2 = 4$

Worked example	Your turn
Find Cartesian equations for the following curves: $r = 8 \cot \theta \csc \theta$	Find Cartesian equations for the following curves: $r = 4 \tan \theta \sec \theta$
	$x^2 = 4y \text{ or } y = \frac{x^2}{4}$
$r^2 = 1 + \cot^2 \theta$	$r^2 = 1 + \tan^2 \theta$
	$x^2 = 1 \text{ or } x = \pm 1$

Worked example	Your turn
Find polar equations for the following curves: $y^2 = 2x$	Find polar equations for the following curves: $y^2 = 4x$
	$r = 4 \cot \theta \ cosec \ \theta$
$x^2 - y^2 = 10$	$x^2 - y^2 = 5$ $r^2 = 5 \sec 2\theta$
$y\sqrt{2} = x + 8$	$y\sqrt{3} = x + 4$ $r = 2cosec \left(\theta - \frac{\pi}{6}\right)$

Worked example	Your turn
Find polar equations for the following curves: y = 4x	Find polar equations for the following curves: y = 2x
	$\tan \theta = 2$
<i>xy</i> = 8	$xy = 4$ $r^2 = 8 \operatorname{cosec} 2\theta$
$y = -\sqrt{2}x + 4$	$y = -\sqrt{3}x + 4$ $r = 2 \operatorname{cosec} \left(\theta + \frac{\pi}{3}\right)$

Worked example	Your turn
Find polar equations for the following curves: $x^2 + y^2 - 4x = 0$	Find polar equations for the following curves: $x^{2} + y^{2} - 2x = 0$
	$r = 2\cos\theta$
$(x+y)^2 = 8$	$(x+y)^2 = 4$ $r^2 = \frac{4}{1+\sin 2\theta}$
x - y = 5	$x - y = 3$ $r = \frac{3}{\sqrt{2}}\sec\left(\theta + \frac{\pi}{4}\right)$

5.2) Sketching curves

Chapter CONTENTS

Worked example	Your turn
Show on an Argand diagram the locus of points given by the values of z satisfying $ z + 4 + 3i = 5$	Show on an Argand diagram the locus of points given by the values of z satisfying $ z - 3 - 4i = 5$
Show that this locus of points can be represented by the polar curve $r = -8 \cos \theta - 6 \sin \theta$	Show that this locus of points can be represented by the polar curve $r = 6 \cos \theta + 8 \sin \theta$
	Shown

5.3) Area enclosed by a polar curve Chapter CONTENTS

Worked example	Your turn
Find the area enclosed by the cardioid with equation $r = a(1 + \sin \theta)$	Find the area enclosed by the cardioid with equation $r = a(1 + \cos \theta)$
	$\frac{3a^2\pi}{2}$

Worked example	Your turn
Find the area of one loop of the curve with polar equation $y = a \cos 3\theta$	Find the area of one loop of the curve with polar equation $y = a \sin 4\theta$
	$\frac{a^2\pi}{16}$

Worked example	Your turn
A curve has equation $r = a + 3 \cos \theta$, $a > 0$ The area enclosed by the curve is $\frac{107}{2}\pi$. Find the value of a .	A curve has equation $r = a + 5 \sin \theta$, $a > 5$ The area enclosed by the curve is $\frac{187}{2}\pi$. Find the value of a . a = 9

Worked example	Your turn
Find the exact value of the area of the finite region contained within both curves $r = 1 + \sin \theta$ and $r = 3 \sin \theta$ Find region $r = 1 + \sin \theta$ and $r = 3 \sin \theta$	d the exact value of the area of the finite gion contained within both two curves = $2 + \cos \theta$ and $r = 5 \cos \theta$ $\frac{43\pi}{12} - \sqrt{3}$

Worked example	Your turn
The set of points, A, is defined by: $A = \{z; \frac{\pi}{2} < \arg z < \pi\} \cap \{z; z + 12 - 5i < 13\}$	The set of points, A, is defined by: $A = \{z: -\frac{\pi}{2} \le \arg z \le 0\} \cap \{z: z - 4 + 3i \le 5\}$
Find the area of the region defined by A	Find the area of the region defined by A
	35.1 (3 st)

Worked ex	kample	Your t	urn
Two curves are given by the	polar equations	Two curves are given by the	polar equations
r = 3,	$0 \le \theta < \frac{\pi}{2}$	r = 2,	$0 \le \theta < \frac{\pi}{2}$
$r = 2.5 + \sin 5\theta$	$0 \le \theta \le \frac{\overline{2}\pi}{r}$	$r = 1.5 + \sin 3\theta$	$0 \le \theta \le \frac{\overline{\pi}}{2}$
Find the area of the region e two curves where $r > 2$ and	enclosed between the $r < 1.5 + \sin 3\theta$	Find the area of the region e two curves where $r > 2$ and	enclosed between the $r < 1.5 + \sin 3\theta$
		$13\sqrt{3}$	5π
			36

5.4) Tangents to polar curves

Worked example	Your turn
Find the coordinates of the points on $r = a(1 + \sin \theta)$ where the tangents are parallel to the initial line $\theta = 0$.	Find the coordinates of the points on $r = a(1 + \cos \theta)$ where the tangents are parallel to the initial line $\theta = 0$.
	$\left(\frac{3a}{2},\pm\frac{\pi}{3}\right)$ and $(0,\pi)$

Worked example	Your turn
Find the coordinates of the points on $r = a(1 + \sin \theta)$ where the tangents are perpendicular to the initial line $\theta = 0$.	Find the coordinates of the points on $r = a(1 + \cos \theta)$ where the tangents are perpendicular to the initial line $\theta = 0$.
	$(2a, 0), (0, \pi)$ and $\left(\frac{(2-\sqrt{2})}{2}a, \pm \frac{3\pi}{4}\right)$

Worked example	Your turn
The curve C has polar equation	The curve C has polar equation
$r = 1 + 3\cos\theta$, $0 \le \theta \le \frac{\pi}{2}$	$r = 1 + 2\cos\theta$, $0 \le \theta \le \frac{\pi}{2}$
At the point <i>P</i> on <i>C</i> , the tangent to <i>C</i> is parallel to the initial line. Given that <i>O</i> is the pole, find the exact length of the line <i>OP</i> .	At the point <i>P</i> on <i>C</i> , the tangent to <i>C</i> is parallel to the initial line. Given that <i>O</i> is the pole, find the exact length of the line <i>OP</i> . $3 + \sqrt{33}$
	4

Worked example	Your turn
Find the points on the spiral $r = e^{3\theta}$, $0 \le \theta \le \pi$, where the tangents are: • Perpendicular to the initial line	Find the points on the spiral $r = e^{2\theta}$, $0 \le \theta \le \pi$, where the tangents are: • Perpendicular to the initial line (9.15, 1.11)
Perpendicular to the initial line	• Perpendicular to the initial line (212, 2.68)

Worked example	Your turn
Find the equation and the points of contact of the tangents to the curve	Find the equation and the points of contact of the tangents to the curve
$r = a \cos 2\theta, 0 \le \theta \le \frac{\pi}{2}$	$r = a \sin 2\theta, 0 \le \theta \le \frac{\pi}{2}$
that are parallel to the initial line	that are parallel to the initial line
	(0,0); Tangent $ heta=0$
	$\left(\frac{2a\sqrt{2}}{3}, 0.955\right)$; Tangent $r = \frac{4a}{3\sqrt{3}}$ cosec θ

Worked example	Your turn
Find the equation and the points of contact of the tangents to the curve	Find the equation and the points of contact of the tangents to the curve
$r = a \cos 2\theta, 0 \le \theta \le \frac{\pi}{2}$	$r = a \sin 2\theta, 0 \le \theta \le \frac{\pi}{2}$
that are perpendicular to the initial line.	that are perpendicular to the initial line.
	$(0,0)$; Tangent $\theta = \frac{\pi}{2}$
	$\left(\frac{2a\sqrt{2}}{3}, 0.615\right)$; Tangent $r = \frac{4a}{3\sqrt{3}}$ sec θ

Worked exampleYour turnThe diagram shows the cardioid with polar
equation $r = 4(1 + \sin \theta)$ The diagram shows the cardioid with polar
equation $r = 2(1 + \cos \theta)$ An area is enclosed by the curve and the
horizontal line segment which is tangent to
the curve and parallel to the initial line.
Find the area.The diagram shows the cardioid with polar
equation $r = 2(1 + \cos \theta)$ An area is enclosed by the curve and the
horizontal line segment which is tangent to the
initial line.
Find the area.The diagram shows the cardioid with polar
equation $r = 2(1 + \cos \theta)$

