5) Polar coordinates

5.1) Polar coordinates and equations
5.2) Sketching curves
5.3) Area enclosed by a polar curve
5.4) Tangents to polar curves

5.1) Polar coordinates and equations Chapter CONTENTS

Convert from Cartesian to polar coordinates:
$(4,-3)$
$(-5,12)$
$(\sqrt{3}, 1)$

Convert from Cartesian to polar coordinates:
$(3,4)$
$(5,0.927)$
$(5,-12)$
$(13,-1.176)$

$$
\begin{gathered}
(-\sqrt{3},-1) \\
\left(2, \frac{7 \pi}{6}\right) \text { or }\left(2,-\frac{5 \pi}{6}\right)
\end{gathered}
$$

Your turn

Convert from polar to Cartesian coordinates:

$$
\begin{gathered}
\left(10, \frac{4 \pi}{3}\right) \\
(-5,5 \sqrt{3})
\end{gathered}
$$

$$
\left(8, \frac{2 \pi}{3}\right)
$$

$$
(-4,4 \sqrt{3})
$$

$(2, \pi)$

$$
(-2,0)
$$

Find Cartesian equations for the following curves: $r=4$

$$
r=3+\cos 4 \theta
$$

$$
r^{4}=\sin 2 \theta, \quad 0<\theta \leq \frac{\pi}{2}
$$

Find Cartesian equations for the following curves:

$$
\begin{gathered}
r=5 \\
x^{2}+y^{2}=25 \\
r=2+\cos 2 \theta \\
\left(x^{2}+y^{2}\right)^{\frac{3}{2}}=3 x^{2}+y^{2} \\
r^{2}=\sin 2 \theta, \quad 0<\theta \leq \frac{\pi}{2} \\
\left(x^{2}+y^{2}\right)^{2}=2 x y
\end{gathered}
$$

Find Cartesian equations for the following curves:

$$
r=5 \sec \theta
$$

$$
r=3 \operatorname{cosec} \theta
$$

$$
r=4 \cos \theta
$$

$$
r=2 \sin \theta
$$

Find Cartesian equations for the following curves:

$$
r=3 \sec \theta
$$

$$
x=3
$$

$$
r=5 \operatorname{cosec} \theta
$$

$$
y=5
$$

$$
r=2 \cos \theta
$$

$$
x^{2}+y^{2}=2 x \text { or }(x-1)^{2}+y^{2}=1
$$

$$
r=4 \sin \theta
$$

$$
x^{2}+y^{2}=4 y \text { or } x^{2}+(y-2)^{2}=4
$$

Find Cartesian equations for the following curves:
$r=8 \cot \theta \operatorname{cosec} \theta$

$$
r^{2}=1+\cot ^{2} \theta
$$

Find Cartesian equations for the following curves:

$$
r=4 \tan \theta \sec \theta
$$

$$
x^{2}=4 y \text { or } y=\frac{x^{2}}{4}
$$

$$
r^{2}=1+\tan ^{2} \theta
$$

$$
x^{2}=1 \text { or } x= \pm 1
$$

Your turn

Find polar equations for the following curves:
$y^{2}=2 x$

$$
x^{2}-y^{2}=10
$$

Find polar equations for the following curves:

$$
y \sqrt{2}=x+8
$$

$$
\begin{gathered}
y^{2}=4 x \\
r=4 \cot \theta \operatorname{cosec} \theta \\
x^{2}-y^{2}=5 \\
r^{2}=5 \sec 2 \theta \\
\\
y=\sqrt{3}=x+4 \\
2 \operatorname{cosec}\left(\theta-\frac{\pi}{6}\right)
\end{gathered}
$$

Your turn

Find polar equations for the following curves:

$$
y=4 x
$$

$$
x y=8
$$

$$
r^{2}=8 \operatorname{cosec} 2 \theta
$$

$$
y=-\sqrt{2} x+4
$$

Find polar equations for the following curves:
$y=2 x$
$\tan \theta=2$
$x y=4$

$$
y=-\sqrt{3} x+4
$$

$$
r=2 \operatorname{cosec}\left(\theta+\frac{\pi}{3}\right)
$$

Your turn

Find polar equations for the following curves:

$$
x^{2}+y^{2}-4 x=0
$$

$$
(x+y)^{2}=8
$$

Find polar equations for the following curves:

$$
\begin{gathered}
x^{2}+y^{2}-2 x=0 \\
r=2 \cos \theta
\end{gathered}
$$

$$
(x+y)^{2}=4
$$

$$
r^{2}=\frac{4}{1+\sin 2 \theta}
$$

$$
x-y=5
$$

$$
x-y=3
$$

$$
r=\frac{3}{\sqrt{2}} \sec \left(\theta+\frac{\pi}{4}\right)
$$

Your turn

Sketch the following curves:

$$
r=4
$$

$$
r=6
$$

Sketch the following curve:

Your turn

Sketch the following curves:
$\theta=-\frac{3 \pi}{4}$
Sketch the following curves:

$$
\theta=\frac{3 \pi}{4}
$$

Your turn

Sketch the following curves: $r=\theta$

$$
r=3 \theta
$$

Sketch the following curves:
$r=2 \theta$

Your turn

Sketch the following curves:

$$
r=\cos \theta
$$

$$
r=3 \cos \theta
$$

Sketch the following curves:
$r=2 \cos \theta$

Graphs used with permission from DESMOS: https://www.desmos.com/

Your turn

Sketch the following curves:

$$
r=\sin \theta
$$

Sketch the following curves:

$$
r=2 \sin \theta
$$

$$
r=3 \sin \theta
$$

$$
r=a \sin \theta
$$

Your turn

Sketch the following curves:

$$
r=\sec \theta
$$

Sketch the following curves:
$r=2 \sec \theta$

$r=3 \sec \theta$

$$
r=a \sec \theta
$$

Your turn

Sketch the following curves:
$r=\operatorname{cosec} \theta$
$r=3 \operatorname{cosec} \theta$
Sketch the following curves:
$r=2 \operatorname{cosec} \theta$

$$
r=a \operatorname{cosec} \theta
$$

Your turn

Sketch the following curves:

$$
r=\sec \left(\theta-\frac{\pi}{4}\right)
$$

Sketch the following curves:

$$
r=2 \sec \left(\theta-\frac{\pi}{3}\right)
$$

$$
r=3 \sec \left(\theta+\frac{\pi}{6}\right)
$$

Your turn

Sketch the following curves:

$$
r=\operatorname{cosec}\left(\theta-\frac{\pi}{4}\right)
$$

$$
r=3 \operatorname{cosec}\left(\theta+\frac{\pi}{6}\right)
$$

Sketch the following curves:

$$
r=2 \operatorname{cosec}\left(\theta-\frac{\pi}{3}\right)
$$

$$
r=a \operatorname{cosec}(\theta-k)
$$

Your turn

Sketch the following curves:
$r=1+\cos \theta$

$$
r=3(1+\cos \theta)
$$

Sketch the following curves:

$$
r=a(1+\cos \theta)
$$

Your turn

Sketch the following curves:

$r=1-\cos \theta$

$$
r=3(1-\cos \theta)
$$

Sketch the following curves:

$$
r=a(1-\cos \theta)
$$

Your turn

Sketch the following curves:
$r=1+\sin \theta$

$$
r=3(1+\sin \theta)
$$

Sketch the following curves:

$$
r=2(1+\sin \theta)
$$

$$
r=a(1+\sin \theta)
$$

Your turn

Sketch the following curves:
$r=1-\sin \theta$

$$
r=3(1-\sin \theta)
$$

Sketch the following curves:
$r=2(1-\sin \theta)$

$$
r=a(1-\sin \theta)
$$

Your turn

Sketch the following curves:
$r=2 \sin 3 \theta$

$$
r=5 \sin 7 \theta
$$

Sketch the following curves:

$$
r=a \sin n \theta
$$

Your turn

Sketch the following curves:

$$
r=2 \cos 3 \theta
$$

$$
r=5 \cos 7 \theta
$$

Sketch the following curves:
$r=3 \cos 5 \theta$

$$
r=a \cos n \theta
$$

Your turn

Sketch the following curves:
$r^{2}=16 \cos 2 \theta$

$$
r^{2}=9 \cos 2 \theta
$$

$r^{2}=4 \cos 2 \theta$

$$
r^{2}=a^{2} \cos 2 \theta
$$

Your turn

Sketch the following curves:
$r^{2}=16 \sin 2 \theta$

$$
r^{2}=9 \sin 2 \theta
$$

Sketch the following curves:
$r^{2}=4 \sin 2 \theta$

$$
r^{2}=a^{2} \sin 2 \theta
$$

Your turn

Sketch the following curves:
$r^{2}=16 \cos \theta$
$r^{2}=9 \cos \theta$

Sketch the following curves:
$r^{2}=4 \cos \theta$

$$
r^{2}=a^{2} \cos \theta
$$

Your turn

Sketch the following curves:

$$
r^{2}=16 \sin \theta
$$

$$
r^{2}=9 \sin \theta
$$

$r^{2}=4 \sin \theta$

$r^{2}=a^{2} \sin 2 \theta$

Your turn

$$
r=6(3+3 \cos \theta)
$$

Sketch:

$$
r=a(2+2 \cos \theta)
$$

Sketches with intercepts and axes labelled. General shapes:

$$
r=5(3+2 \cos \theta)
$$

$$
r=4(3+\cos \theta)
$$

Graphs used with permission from DESMOS: https://www.desmos.com/

Your turn

$$
r=6(3+3 \sin \theta)
$$

Sketch:

$$
r=a(2+2 \sin \theta)
$$

Sketches with intercepts and axes labelled. General shapes:

$$
r=5(3+2 \sin \theta)
$$

$$
r=4(3+\sin \theta)
$$

Graphs used with permission from DESMOS: https://www.desmos.com/

Your turn

Show on an Argand diagram the locus of points given by the values of z satisfying $|z+4+3 i|=5$

Show that this locus of points can be represented by the polar curve $r=-8 \cos \theta-6 \sin \theta$

Show on an Argand diagram the locus of points given by the values of z satisfying $|z-3-4 i|=5$

Show that this locus of points can be represented by the polar curve $r=6 \cos \theta+8 \sin \theta$

Shown
5.3) Area enclosed by a polar curve Chapter CONTENTS

Find the area enclosed by the cardioid with equation $r=a(1+\sin \theta)$

Find the area enclosed by the cardioid with equation $r=a(1+\cos \theta)$

$$
\frac{3 a^{2} \pi}{2}
$$

Your turn

Find the area of one loop of the curve with polar equation $y=a \cos 3 \theta$

Find the area of one loop of the curve with polar equation $y=a \sin 4 \theta$

$$
\frac{a^{2} \pi}{16}
$$

Your turn

A curve has equation $r=a+3 \cos \theta, a>0$ The area enclosed by the curve is $\frac{107}{2} \pi$. Find the value of a.

A curve has equation $r=a+5 \sin \theta, a>5$ The area enclosed by the curve is $\frac{187}{2} \pi$.
Find the value of a.

$$
a=9
$$

Your turn

Find the exact value of the area of the finite region contained within both curves $r=1+\sin \theta$ and $r=3 \sin \theta$

Find the exact value of the area of the finite region contained within both two curves
$r=2+\cos \theta$ and $r=5 \cos \theta$

$$
\frac{43 \pi}{12}-\sqrt{3}
$$

Your turn

The set of points, A, is defined by:
$A=\left\{z: \frac{\pi}{2} \leq \arg z \leq \pi\right\} \cap\{z:|z+12-5 i| \leq 13$
Find the area of the region defined by A

The set of points, A, is defined by:

$$
A=\left\{z:-\frac{\pi}{4} \leq \arg z \leq 0\right\} \cap\{z:|z-4+3 i| \leq 5
$$

Find the area of the region defined by A
35.1 (3 sf)

Your turn

Two curves are given by the polar equations

$$
\begin{array}{ll}
r=3, & 0 \leq \theta<\frac{\pi}{2} \\
r=2.5+\sin 5 \theta & 0 \leq \theta \leq \frac{2 \pi}{5}
\end{array}
$$

Find the area of the region enclosed between the two curves where $r>2$ and $r<1.5+\sin 3 \theta$

Two curves are given by the polar equations

$$
\begin{array}{ll}
r=2, & 0 \leq \theta<\frac{\pi}{2} \\
r=1.5+\sin 3 \theta & 0 \leq \theta \leq \frac{\pi}{2}
\end{array}
$$

Find the area of the region enclosed between the two curves where $r>2$ and $r<1.5+\sin 3 \theta$

$$
\frac{13 \sqrt{3}}{24}-\frac{5 \pi}{36}
$$

Your turn

Find the coordinates of the points on

$r=a(1+\sin \theta)$ where the tangents are parallel to the initial line $\theta=0$.

Find the coordinates of the points on
$r=a(1+\cos \theta)$ where the tangents are parallel
to the initial line $\theta=0$.

$$
\left(\frac{3 a}{2}, \pm \frac{\pi}{3}\right) \text { and }(0, \pi)
$$

Your turn

Find the coordinates of the points on $r=a(1+\sin \theta)$ where the tangents are perpendicular to the initial line $\theta=0$.

Find the coordinates of the points on $r=a(1+\cos \theta)$ where the tangents are perpendicular to the initial line $\theta=0$.

$$
(2 a, 0),(0, \pi) \text { and }\left(\frac{(2-\sqrt{2})}{2} a, \pm \frac{3 \pi}{4}\right)
$$

The curve C has polar equation

$$
r=1+3 \cos \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

At the point P on C, the tangent to C is parallel to the initial line.
Given that O is the pole, find the exact length of the line $O P$.

The curve C has polar equation

$$
r=1+2 \cos \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

At the point P on C, the tangent to C is parallel to the initial line.
Given that O is the pole, find the exact length of the line $O P$.

$$
\frac{3+\sqrt{33}}{4}
$$

Your turn

Find the points on the spiral $r=e^{3 \theta}, 0 \leq \theta \leq \pi$, where the tangents are:

- Perpendicular to the initial line

Find the points on the spiral $r=e^{2 \theta}, 0 \leq \theta \leq \pi$, where the tangents are:

- Perpendicular to the initial line
$(9.15,1.11)$
- Perpendicular to the initial line
$(212,2.68)$

Worked example

Your turn

Find the equation and the points of contact of the tangents to the curve

$$
r=a \cos 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

that are parallel to the initial line

Find the equation and the points of contact of the tangents to the curve

$$
r=a \sin 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

that are parallel to the initial line

$$
\begin{gathered}
(0,0) ; \text { Tangent } \theta=0 \\
\left(\frac{2 a \sqrt{2}}{3}, 0.955\right) ; \text { Tangent } r=\frac{4 a}{3 \sqrt{3}} \operatorname{cosec} \theta
\end{gathered}
$$

Worked example

Your turn

Find the equation and the points of contact of the tangents to the curve

$$
r=a \cos 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

that are perpendicular to the initial line.

Find the equation and the points of contact of the tangents to the curve

$$
r=a \sin 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

that are perpendicular to the initial line.

$$
\begin{aligned}
(0,0) ; \text { Tangent } \theta & =\frac{\pi}{2} \\
\left(\frac{2 a \sqrt{2}}{3}, 0.615\right) ; \text { Tangent } r & =\frac{4 a}{3 \sqrt{3}} \sec \theta
\end{aligned}
$$

Your turn

The diagram shows the cardioid with polar equation $r=4(1+\sin \theta)$ An area is enclosed by the curve and the horizontal line segment which is tangent to the curve and parallel to the initial line. Find the area.

The diagram shows the cardioid with polar equation $r=2(1+\cos \theta)$
An area is enclosed by the curve and the vertical line segment which is tangent to the curve and perpendicular to the initial line. Find the area.

$$
\frac{15 \sqrt{3}}{4}-2 \pi
$$

