4.5) Linear transformations of roots

Worked example	Your turn
The quadratic equation $x^2 + 3x - 10 = 0$ has roots α and β . Without finding the roots, determine the equation with roots $\alpha - 2$ and $\beta - 2$	The quadratic equation $x^2 - 3x - 10 = 0$ has roots α and β . Without finding the roots, determine the equation with roots $\alpha - 1$ and $\beta - 1$ $w^2 - w - 12 = 0$

Worked example	Your turn
The cubic equation $x^3 + 2x^2 - 3x + 4 = 0$ has roots α , β and γ . Find the equation of the polynomial with roots: 3α , 3β and 3γ	The cubic equation $x^3 - 2x^2 + 3x - 4 = 0$ has roots α, β and γ . Find the equation of the polynomial with roots: $2\alpha, 2\beta$ and 2γ $w^3 - 4w^2 + 12w - 32 = 0$

Worked example	Your turn
Worked example The cubic equation $x^3 + 2x^2 - 3x + 4 = 0$ has roots α, β and γ . Find the equation of the polynomial with roots: $\alpha - 2, \beta - 2$ and $\gamma - 2$	Your turnThe cubic equation $x^3 - 2x^2 + 3x - 4 = 0$ has roots α, β and γ . Find the equation of the polynomial with roots: $\alpha + 3, \beta + 3$ and $\gamma + 3$ $w^3 - 11w^2 + 42w - 58 = 0$

Worked example	Your turn
The cubic equation $x^3 + 2x^2 - 4 = 0$ has roots $\alpha, \beta, \gamma, \delta$. Find the equation with roots $(2\alpha + 1)$, $(2\beta + 1), (2\gamma + 1)$ and $(2\delta + 1)$	The cubic equation $x^3 - 2x^2 + 4 = 0$ has roots $\alpha, \beta, \gamma, \delta$. Find the equation with roots $(3\alpha - 1)$, $(3\beta - 1), (3\gamma - 1)$ and $(3\delta - 1)$
	$w^3 - 3w^2 - 9w + 103 = 0$

Worked example	Your turn
The quartic equation $x^4 + 3x^3 - x^2 - 15x - 1 = 0$ has roots α, β, γ and δ . Find the equation of the polynomial with roots: $(3\alpha - 1), (3\beta - 1), (3\gamma - 1)$ and $(3\delta - 1)$	The quartic equation $x^4 - 3x^3 + 15x + 1 = 0$ has roots α, β, γ and δ . Find the equation of the polynomial with roots: $(2\alpha + 1), (2\beta + 1), (2\gamma + 1)$ and $(2\delta + 1)$ $w^4 - 10w^3 + 24w^2 + 98w - 97 = 0$