4.4) Modelling with volumes of revolution

Your turn

A vase is modelled using a diagram. The maximum diameter of the vase on the diagram is 4 cm .
The cross-section of the model is described by the curve with parametric equations
$x=2 \sin 2 t, y=4 \cos t+2,0 \leq t \leq \frac{\pi}{2}$, where the units of x and y are in cm .
The vase is formed by rotating this curve about the y-axis to form a solid of revolution.
(a) Find the volume of water required to fill the vase to a height of 3 cm .
The real goldfish bowl has a maximum diameter of 24 cm .
(b) Find the volume of water required to fill the real goldfish bowl to the corresponding height.

A goldfish bowl is modelled using a diagram. The diameter of the bowl on the diagram is 4 cm .
The cross-section of the model is described by the curve with parametric equations
$x=2 \sin t, y=2 \cos t+2, \frac{\pi}{6} \leq t \leq \frac{11 \pi}{6}$, where the units of x and y are in cm . The goldfish bowl is formed by rotating this curve about the y-axis to form a solid of revolution.
(a) Find the volume of water required to fill the model to a height of 3 cm .
The real goldfish bowl has a maximum diameter of 48 cm .
(b) Find the volume of water required to fill the real goldfish bowl to the corresponding height.
(a) $9 \pi \mathrm{~cm}^{3}$
(b) $48900 \mathrm{~cm}^{3}(3 \mathrm{sf})$

