4.4) Modelling with volumes of revolution

Worked example	Your turn
diameter of the vase on the diagram is 4 cm. The cross-section of the model is described by the curve with parametric equations $x = 2 \sin 2t$, $y = 4 \cos t + 2$, $0 \le t \le \frac{\pi}{2}$, where the units of x and y are in cm. The vase is formed by rotating this curve about the y-axis to form a solid of revolution. (a) Find the volume of water required to fill the vase to a height of 3cm. The real goldfish bowl has a maximum diameter of 24cm. (b) Find the volume of water required to fill the real goldfish bowl to the corresponding height.	A goldfish bowl is modelled using a diagram. The diameter of the bowl on the diagram is 4 cm. The cross-section of the model is described by the curve with parametric equations $x = 2 \sin t$, $y = 2 \cos t + 2$, $\frac{\pi}{6} \le t \le \frac{11\pi}{6}$, where the units of x and y are in cm. The goldfish bowl is formed by rotating this curve about the y-axis to form a solid of revolution. (a) Find the volume of water required to fill the model to a height of 3cm. The real goldfish bowl has a maximum diameter of 48cm. (b) Find the volume of water required to fill the real goldfish bowl to the corresponding height. (a) $9\pi \ cm^3$ (b) $48900 \ cm^3$ (3 sf)