Expressions Related to the Roots of Polynomials

Sums of squares:

• Quadratic: $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$

• Cubic: $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$

• Quartic: $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (\alpha + \beta + \gamma + \delta)^2 - 2(\alpha\beta + \beta)^2$

 $\alpha\beta + \alpha\gamma + \beta\gamma + \cdots$

Sums of cubes:

• Quadratic: $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$

• Cubic: $\alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)^3 - 3(\alpha + \beta + \gamma)(\alpha\beta + \beta)^3$

 $\beta \gamma + \gamma \alpha) + 3\alpha \beta \gamma$

Reciprocals:

• Quadratic: $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$

• Cubic: $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha \beta + \beta \gamma + \gamma \alpha}{\alpha \beta \gamma}$

• Quartic: $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\Sigma \alpha \beta \gamma}{\alpha \beta \gamma \delta}$

Products of Powers

• Quadratic: $\alpha^n + \beta^n = (\alpha\beta)^n$

• Cubic: $(\alpha + \beta + \gamma)^n = (\alpha \beta \gamma)^n$

• Quartic: $(\alpha + \beta + \gamma + \delta)^n = (\alpha\beta\gamma\delta)^n$

Example

The three roots of a cubic equation are α , β and γ . Given that $\alpha\beta\gamma=4$,

 $lphaeta+eta\gamma+\gammalpha=-5$ and $lpha+eta+\gamma=3$, find the value of

$$(\alpha+3)(\beta+3)(\gamma+3)$$