4.4) Expressions relating to the roots of a polynomial

A quadratic equation has roots α and β. Given that $\alpha+\beta=3$ and $\alpha \beta=4$, find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}$
(b) $\alpha^{2} \beta^{2}$
(c) $\alpha^{2}+\beta^{2}$
(d) $\alpha^{3}+\beta^{3}$

A quadratic equation has roots α and β. Given that $\alpha+\beta=4$ and $\alpha \beta=3$, find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}$
(b) $\alpha^{2} \beta^{2}$
(c) $\alpha^{2}+\beta^{2}$
(d) $\alpha^{3}+\beta^{3}$
(a) $\frac{4}{3}$
(b) 9
(c) 10
(d) 28

Your turn

A quadratic equation has roots α and β. Given that $\alpha+\beta=3$ and $\alpha \beta=4$, find:
(a) $(\alpha+3)(\beta+3)$
(b) $\left(\alpha^{2}-5\right)\left(\beta^{2}-5\right)$

A quadratic equation has roots α and β. Given that $\alpha+\beta=4$ and $\alpha \beta=3$, find:
(a) $(\alpha+5)(\beta+5)$
(b) $\left(\alpha^{2}-3\right)\left(\beta^{2}-3\right)$
(a) 48
(b) -12

Worked example

Your turn

A cubic equation has roots α, β and γ. Given that $\alpha+\beta+\gamma=-2, \alpha \beta+\alpha \gamma+\beta \gamma=3$ and $\alpha \beta \gamma=-4$ find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(b) $\alpha^{2}+\beta^{2}+\gamma^{2}$

A cubic equation has roots α, β and γ.
Given that $\alpha+\beta+\gamma=2, \alpha \beta+\alpha \gamma+\beta \gamma=-3$ and $\alpha \beta \gamma=4$ find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(c) $\alpha^{3}+\beta^{3}+\gamma^{3}$
(d) $(\alpha \beta)^{2}+(\alpha \gamma)^{2}+(\beta \gamma)^{2}$
(b) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(c) $\alpha^{3}+\beta^{3}+\gamma^{3}$
(d) $(\alpha \beta)^{2}+(\alpha \gamma)^{2}+(\beta \gamma)^{2}$
(e) $\alpha^{3} \beta^{3} \gamma^{3}$
(a) $-\frac{3}{4}$
(b) 10
(c) 38
(d) -7
(e) 64

Worked example

Your turn

A cubic equation has roots α, β and γ. Given that $\alpha+\beta+\gamma=\frac{1}{2}, \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{3}{4}$ and $\alpha \beta \gamma=\frac{2}{5}$ find:
(a) $(\alpha+3)(\beta+3)(\gamma+3)$
(b) $(2-\alpha)(2-\beta)(2-\gamma)$

A cubic equation has roots α, β and γ.
Given that $\alpha+\beta+\gamma=-\frac{1}{2}, \alpha \beta+\alpha \gamma+\beta \gamma=\frac{3}{4}$ and
$\alpha \beta \gamma=-\frac{2}{5}$ find:
(a) $(\alpha+2)(\beta+2)(\gamma+2)$
(b) $(1-\alpha)(1-\beta)(1-\gamma)$
(9) $\frac{\pi_{10}^{2}}{10}$
(b) $\frac{53}{20}$

Worked example

Your turn

A cubic equation has roots α, β and γ.
Given that $\alpha+\beta+\gamma=\frac{1}{2}, \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{3}{4}$ and $\alpha \beta \gamma=\frac{2}{5}$ find $(\alpha \beta)^{3}+(\alpha \gamma)^{3}+(\beta \gamma)^{3}$

A cubic equation has roots α, β and γ.
Given that $\alpha+\beta+\gamma=-\frac{1}{2}, \alpha \beta+\alpha \gamma+\beta \gamma=\frac{3}{4}$ and
$\alpha \beta \gamma=-\frac{2}{5}$ find $(\alpha \beta)^{3}+(\alpha \gamma)^{3}+(\beta \gamma)^{3}$

$$
\frac{723}{1600}
$$

The three roots of a cubic equation are α, β and γ. Given that $\alpha \beta \gamma=5, \alpha \beta+\beta \gamma+\gamma \alpha=-4$ and $\alpha+\beta+\gamma=3$, find the value of $(\alpha+2)(\beta+2)(\gamma+2)$

The three roots of a cubic equation are α, β and γ. Given that $\alpha \beta \gamma=4, \alpha \beta+\beta \gamma+\gamma \alpha=-5$ and $\alpha+\beta+\gamma=3$, find the value of
$(\alpha+3)(\beta+3)(\gamma+3)$

A quartic equation has roots α, β, γ and δ Given that $\sum \alpha=-\frac{1}{2}, \sum \alpha \beta=\frac{3}{4}, \sum \alpha \beta \gamma=\frac{1}{5}$ and $\alpha \beta \gamma \delta=-\frac{4}{3}$, find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$
(b) $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$
(c) $\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}$

A quartic equation has roots α, β, γ and δ
Given that $\sum \alpha=\frac{1}{2}, \sum \alpha \beta=-\frac{3}{4}, \sum \alpha \beta \gamma=-\frac{1}{5}$ and $\alpha \beta \gamma \delta=\frac{4}{3}$, find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$
(b) $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$
(c) $\alpha^{3} \beta^{3} \gamma^{3} \delta^{3}$
(a) $-\frac{3}{20}$
(b) $\frac{7}{4}$
(c) $\frac{64}{27}$

Your turn

A quartic equation has roots α, β, γ and δ Given that $\sum \alpha=-\frac{1}{2}, \sum \alpha \beta=\frac{3}{4}, \sum \alpha \beta \gamma=\frac{1}{5}$ and $\alpha \beta \gamma \delta=-\frac{4}{3}$, find:
(a) $(\alpha+2)(\beta+2)(\gamma+2)(\delta+2)$

A quartic equation has roots α, β, γ and δ
Given that $\sum \alpha=\frac{1}{2}, \sum \alpha \beta=-\frac{3}{4}, \sum \alpha \beta \gamma=-\frac{1}{5}$ and
$\alpha \beta \gamma \delta=\frac{4}{3}$, find:
(a) $(\alpha+1)(\beta+1)(\gamma+1)(\delta+1)$
(b) $(1-\alpha)(1-\beta)(1-\gamma)(1-\delta)$
(a) $\frac{113}{60}$
(b) $\frac{77}{60}$

Your turn

A quartic equation has roots α, β, γ and δ Given that $\sum \alpha=-\frac{1}{2}, \sum \alpha \beta=\frac{3}{4}, \sum \alpha \beta \gamma=\frac{1}{5}$ and $\alpha \beta \gamma \delta=-\frac{4}{3}$, find

$$
(\alpha \beta)^{2}+(\alpha \gamma)^{2}+(\alpha \delta)^{2}+(\beta \gamma)^{2}+(\beta \delta)^{2}+(\gamma \delta)^{2}
$$

A quartic equation has roots α, β, γ and δ
Given that $\sum \alpha=\frac{1}{2}, \sum \alpha \beta=-\frac{3}{4}, \sum \alpha \beta \gamma=-\frac{1}{5}$ and $\alpha \beta \gamma \delta=\frac{4}{3}$, find

$$
(\alpha \beta)^{2}+(\alpha \gamma)^{2}+(\alpha \delta)^{2}+(\beta \gamma)^{2}+(\beta \delta)^{2}+(\gamma \delta)^{2}
$$

$$
\frac{823}{240}
$$

Your turn

A quartic equation has roots α, β, γ and δ Given that $\sum \alpha=-\frac{1}{2}, \sum \alpha \beta=\frac{3}{4}, \sum \alpha \beta \gamma=\frac{1}{5}$ and $\alpha \beta \gamma \delta=-\frac{4}{3}$, find

$$
(\alpha \beta \gamma)^{2}+(\alpha \beta \delta)^{2}+(\alpha \gamma \delta)^{2}+(\beta \gamma \delta)^{2}
$$

A quartic equation has roots α, β, γ and δ
Given that $\sum \alpha=\frac{1}{2}, \sum \alpha \beta=-\frac{3}{4}, \sum \alpha \beta \gamma=-\frac{1}{5}$ and $\alpha \beta \gamma \delta=\frac{4}{3}$, find

$$
(\alpha \beta \gamma)^{2}+(\alpha \beta \delta)^{2}+(\alpha \gamma \delta)^{2}+(\beta \gamma \delta)^{2}
$$

