4.4) Expressions relating to the roots of a polynomial

Worked example	Your turn
A quadratic equation has roots α and β . Given that $\alpha + \beta = 3$ and $\alpha\beta = 4$, find: (a) $\frac{1}{\alpha} + \frac{1}{\beta}$ (b) $\alpha^2\beta^2$ (c) $\alpha^2 + \beta^2$ (d) $\alpha^3 + \beta^3$	A quadratic equation has roots α and β . Given that $\alpha + \beta = 4$ and $\alpha\beta = 3$, find: (a) $\frac{1}{\alpha} + \frac{1}{\beta}$ (b) $\alpha^2\beta^2$ (c) $\alpha^2 + \beta^2$ (d) $\alpha^3 + \beta^3$
(a) $\frac{1}{\alpha} + \frac{1}{\beta}$ (b) $\alpha^2 \beta^2$ (c) $\alpha^2 + \beta^2$ (d) $\alpha^3 + \beta^3$	(a) $\frac{1}{\alpha} + \frac{1}{\beta}$ (b) $\alpha^{-\beta^{-1}}$ (c) $\alpha^{-} + \beta^{-1}$ (d) $\alpha^{-} + \beta^{-1}$ (a) $\frac{4}{3}$ (b) 9 (c) 10 (d) 28

Worked example	Your turn
A quadratic equation has roots α and β . Given that $\alpha + \beta = 3$ and $\alpha\beta = 4$, find: (a) $(\alpha + 3)(\beta + 3)$ (b) $(\alpha^2 - 5)(\beta^2 - 5)$	A quadratic equation has roots α and β . Given that $\alpha + \beta = 4$ and $\alpha\beta = 3$, find: (a) $(\alpha + 5)(\beta + 5)$ (b) $(\alpha^2 - 3)(\beta^2 - 3)$ (a) 48 (b) -12

Worked example	Your turn
A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = -2$, $\alpha\beta + \alpha\gamma + \beta\gamma = 3$ and $\alpha\beta\gamma = -4$ find: (a) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ (b) $\alpha^2 + \beta^2 + \gamma^2$ (c) $\alpha^3 + \beta^3 + \gamma^3$ (d) $(\alpha\beta)^2 + (\alpha\gamma)^2 + (\beta\gamma)^2$ (e) $\alpha^2\beta^2\gamma^2$	A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = 2$, $\alpha\beta + \alpha\gamma + \beta\gamma = -3$ and $\alpha\beta\gamma = 4$ find: (a) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ (b) $\alpha^2 + \beta^2 + \gamma^2$ (c) $\alpha^3 + \beta^3 + \gamma^3$ (d) $(\alpha\beta)^2 + (\alpha\gamma)^2 + (\beta\gamma)^2$ (e) $\alpha^3\beta^3\gamma^3$ (a) $-\frac{3}{4}$ (b) 10 (c) 38 (d) -7 (e) 64

Worked example	Your turn
A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = \frac{1}{2}$, $\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{4}$ and $\alpha\beta\gamma = \frac{2}{5}$ find: (a) $(\alpha + 3)(\beta + 3)(\gamma + 3)$	A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = -\frac{1}{2}$, $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{3}{4}$ and $\alpha\beta\gamma = -\frac{2}{5}$ find: (a) $(\alpha + 2)(\beta + 2)(\gamma + 2)$
(b) $(2 - \alpha)(2 - \beta)(2 - \gamma)$	(a) $(\alpha + 2)(\beta + 2)(\gamma + 2)$ (b) $(1 - \alpha)(1 - \beta)(1 - \gamma)$ (a) $\frac{71}{10}$ (b) $\frac{53}{20}$

Worked example	Your turn
A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = \frac{1}{2}$, $\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{4}$ and $\alpha\beta\gamma = \frac{2}{5}$ find $(\alpha\beta)^3 + (\alpha\gamma)^3 + (\beta\gamma)^3$	A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = -\frac{1}{2}$, $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{3}{4}$ and $\alpha\beta\gamma = -\frac{2}{5}$ find $(\alpha\beta)^3 + (\alpha\gamma)^3 + (\beta\gamma)^3$
	723 1600

Your turn
Your turn The three roots of a cubic equation are α, β and γ . Given that $\alpha\beta\gamma = 4, \alpha\beta + \beta\gamma + \gamma\alpha = -5$ and $\alpha + \beta + \gamma = 3$, find the value of $(\alpha + 3)(\beta + 3)(\gamma + 3)$ 43

Worked example	Your turn
Given that $\sum \alpha = -\frac{1}{2}$, $\sum \alpha \beta = \frac{3}{4}$, $\sum \alpha \beta \gamma = \frac{1}{5}$ and $\alpha \beta \gamma \delta = -\frac{4}{3}$, find: (a) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (b) $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ (c) $\alpha^2 \beta^2 \gamma^2 \delta^2$ (c) $\alpha^2 \beta^2 \gamma^2 \delta^2$ (c) $\alpha^2 \beta^2 \gamma^2 \delta^2$	quartic equation has roots α , β , γ and δ ven that $\sum \alpha = \frac{1}{2}$, $\sum \alpha \beta = -\frac{3}{4}$, $\sum \alpha \beta \gamma = -\frac{1}{5}$ and $\beta\gamma\delta = \frac{4}{3}$, find:) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$) $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$) $\alpha^3\beta^3\gamma^3\delta^3$) $-\frac{3}{20}$) $\frac{7}{4}$) $\frac{64}{27}$

Your turn
A quartic equation has roots α , β , γ and δ
Given that $\sum \alpha = \frac{1}{2}$, $\sum \alpha \beta = -\frac{3}{4}$, $\sum \alpha \beta \gamma = -\frac{1}{5}$ and
$\alpha\beta\gamma\delta=\frac{4}{3}$, find:
(a) $(\alpha + 1)(\beta + 1)(\gamma + 1)(\delta + 1)$
(b) $(1 - \alpha)(1 - \beta)(1 - \gamma)(1 - \delta)$
(a) $\frac{113}{60}$ (b) $\frac{77}{60}$

Worked example	Your turn
A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = -\frac{1}{2}$, $\sum \alpha \beta = \frac{3}{4}$, $\sum \alpha \beta \gamma = \frac{1}{5}$ and $\alpha \beta \gamma \delta = -\frac{4}{3}$, find $(\alpha \beta)^2 + (\alpha \gamma)^2 + (\alpha \delta)^2 + (\beta \gamma)^2 + (\beta \delta)^2 + (\gamma \delta)^2$	A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = \frac{1}{2}$, $\sum \alpha \beta = -\frac{3}{4}$, $\sum \alpha \beta \gamma = -\frac{1}{5}$ and $\alpha \beta \gamma \delta = \frac{4}{3}$, find $(\alpha \beta)^2 + (\alpha \gamma)^2 + (\alpha \delta)^2 + (\beta \gamma)^2 + (\beta \delta)^2 + (\gamma \delta)^2$
	823 240

Worked example	Your turn
A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = -\frac{1}{2}$, $\sum \alpha \beta = \frac{3}{4}$, $\sum \alpha \beta \gamma = \frac{1}{5}$ and $\alpha \beta \gamma \delta = -\frac{4}{3}$, find $(\alpha \beta \gamma)^2 + (\alpha \beta \delta)^2 + (\alpha \gamma \delta)^2 + (\beta \gamma \delta)^2$	A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = \frac{1}{2}$, $\sum \alpha \beta = -\frac{3}{4}$, $\sum \alpha \beta \gamma = -\frac{1}{5}$ and $\alpha \beta \gamma \delta = \frac{4}{3}$, find $(\alpha \beta \gamma)^2 + (\alpha \beta \delta)^2 + (\alpha \gamma \delta)^2 + (\beta \gamma \delta)^2$
	<u>51</u> 25