Roots of Quartics

Polynomial	Sum of roots	Sum of possible <u>products of pairs</u> of roots	Sum of <u>products</u> of triples	Sum of products of <u>quadruples</u>
Quadratic $ax^2 + bx + c$ (Roots: α, β)	$\alpha + \beta = -\frac{b}{a}$	$\alpha\beta = \frac{c}{a}$	N/A	N/A
Cubic $ax^3 + bx^2 + cx + d$ (Roots: α, β, γ)	$\begin{aligned} \alpha + \beta + \gamma \\ = -\frac{b}{a} \end{aligned}$	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$	$\alpha\beta\gamma=-\frac{d}{a}$	N/A
Quartic $ax^4 + bx^3 + cx^2$ + dx + e (Roots: $\alpha, \beta, \gamma, \delta$)	$\begin{aligned} \alpha + \cdots + \delta \\ = -\frac{b}{a} \end{aligned}$	$\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = \frac{c}{a}$	$\begin{aligned} \alpha\beta\gamma + \alpha\beta\delta + \cdots \\ = -\frac{d}{a} \end{aligned}$	$\alpha\beta\gamma\delta=\frac{e}{a}$

Example

Find the quartic equation with roots 1, -2 and 3 (repeated).

Example

The equation $x^4 + 2x^3 + px^2 + qx - 60 = 0$, $x \in \mathbb{C}$, $p, q \in \mathbb{R}$, has roots α , β , γ , δ . Given that $\gamma = -2 + 4i$ and $\delta = \gamma^*$.

- (a) Show that lpha+eta-2=0 and that lphaeta+3=0
- (b) Hence find all the roots of the quartic equation and find the values of p and q.

Ex 4C pg 60-61