Roots of Quartics

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Polynomial } & \text { Sum of roots } & \begin{array}{l}\text { Sum of possible } \\ \text { products of pairs of } \\ \text { roots }\end{array} & \begin{array}{l}\text { Sum of products } \\ \text { of triples }\end{array} & \begin{array}{l}\text { Sum of products of } \\ \text { quadruples }\end{array} \\ \hline \begin{array}{c}\text { Quadratic } \\ \text { ax }\end{array} \\ \text { (Roots: } \alpha, \beta \text {) }\end{array}\right)$

Example

Find the quartic equation with roots $1,-2$ and 3 (repeated).

Example

The equation $x^{4}+2 x^{3}+p x^{2}+q x-60=0, x \in \mathbb{C}, p, q \in \mathbb{R}$, has roots $\alpha, \beta, \gamma, \delta$. Given that $\gamma=-2+4 i$ and $\delta=\gamma^{*}$.
(a) Show that $\alpha+\beta-2=0$ and that $\alpha \beta+3=0$
(b) Hence find all the roots of the quartic equation and find the values of p and q.

