4.3) Roots of a quartic equation

Worked example	Your turn
$\alpha, \beta, \gamma, \text{ and } \delta \text{ are the roots of the quartic equation} x^4 - 3x^3 - 2x^2 + x - 4 = 0 Find the values of: (a) \alpha + \beta + \gamma + \delta(b) \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta(c) \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta(d) \alpha\beta\gamma\delta(e) \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}(f) \alpha^2\beta^2\gamma^2\delta^2$	a, β , γ , and δ are the roots of the quartic equation $x^4 + 3x^3 + 2x^2 - x + 4 = 0$ Find the values of: (a) $\alpha + \beta + \gamma + \delta$ (b) $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ (c) $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta$ (d) $\alpha\beta\gamma\delta$ (e) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (f) $\alpha^3\beta^3\gamma^3\delta^3$ (a) - 3 (b) 2 (c) 1 (d) 4 (e) $\frac{1}{4}$ (f) 64

Worked example	Your turn
The roots of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ are $\alpha = \frac{2}{3}, \beta = \frac{1}{2}, \gamma = 2$ and $\delta = -\frac{3}{2}$ Find integer values of a, b and c	The roots of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ are $\alpha = -\frac{3}{2}, \beta = -\frac{1}{2}, \gamma = -2$ and $\delta = \frac{2}{3}$ Find integer values of a, b and c a = 12, b = 40, c = 25, d = -20, e = -12

Worked example	Your turn
The equation $x^4 + 4x^3 + px^2 + qx - 80 = 0, x \in \mathbb{C}, p, q \in \mathbb{R}$, has roots $\alpha, \beta, \gamma, \delta$. Given that $\gamma = -4 + 2i$ and $\delta = \gamma^*$. (a) Show that $\alpha + \beta - 4 = 0$ and that $\alpha\beta + 4 = 0$ (b) Hence find all the roots of the quartic equation and find the values of p and q .	The equation $x^4 + 2x^3 + px^2 + qx - 60 = 0, x \in \mathbb{C}, p, q \in \mathbb{R}$, has roots $\alpha, \beta, \gamma, \delta$. Given that $\gamma = -2 + 4i$ and $\delta = \gamma^*$. (a) Show that $\alpha + \beta - 2 = 0$ and that $\alpha\beta + 3 = 0$ (b) Hence find all the roots of the quartic equation and find the values of p and q . (a) Shown (b) $p = 9, q = -52$