Volumes of revolution for parametric curves

We have seen in Pure Year 2 that parametric equations are where, instead of some single equation relating x and y, we have an equation for each of x and y in terms of some parameter, e.g. t. As t varies, this generates different points (x, y).
To integrate parametrically, the trick was to replace $d x$ with $\frac{d x}{d t} d t$
$V=\pi \int_{x=b}^{x=a} y^{2} d x$

Note that as we're integrating with respect to t now, we need to find the equivalent limits for t. We can do the same for revolving around the y-axis: just replace $d y$ with $\frac{d y}{d t}$ and change the limits.

Example

The curve C has parametric equations $x=t(1+t), y=\frac{1}{1+t^{\prime}} t \geq 0$.
The region R is bounded by C, the x-axis and the lines $x=0$ and $y=0$. Find the exact volume of the solid formed when R is rotated 2π radians about the x-axis.

Test Your Understanding

Edexcel C4(Old) June 2011 Q7
The finite shaded region S shown in Figure 3 is bounded by the curve C, the line $x=\sqrt{3}$ and the x-axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution.
(c) Find the volume of the solid of revolution, giving your answer in the form $p \pi \sqrt{ } 3+q \pi^{2}$, where p and q are constants.

Figure 3 shows part of the curve C with parametric equations

$$
x=\tan \theta, \quad y=\sin \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

