4.3) Volumes of revolution of parametrically defined curves

Worked example	Your turn
The curve C has parametric equations	The curve C has parametric equations
$x = t(1-t), y = \frac{1}{1-t}, t \le 0.$	$x = t(1+t), y = \frac{1}{1+t}, t \ge 0.$
The region R is bounded by C, the x-axis and the	The region R is bounded by C, the x-axis and the
lines $x = 0$ and $x = -2$.	lines $x = 0$ and $x = 2$.
Find the exact volume of the solid formed when <i>R</i>	Find the exact volume of the solid formed when <i>R</i>
is rotated 2π radians about the x-axis.	is rotated 2π radians about the x-axis.
	$\pi(2\ln 2 - \frac{1}{2})$

Worked example	Your turn
A curve C has parametric equations	A curve C has parametric equations
$x= an heta$, $y= ext{sec}^3 heta$, $0\leq heta<rac{\pi}{2}$	$x = an heta$, $y = \sin heta$, $0 \le heta < rac{\pi}{2}$
A finite region is bounded by the curve C, the y- axis, and the lines $y = 1$ and $y = 8$. Find the exact volume of the solid formed when this region is rotated 2π radians about the y-axis.	A finite region is bounded by the curve C, the line $x = \sqrt{3}$ and the <i>x</i> -axis. Find the exact volume of the solid formed when this region is rotated 2π radians about the <i>x</i> -axis.
	$\pi\sqrt{3} - \frac{1}{3}\pi^2$

Worked example	Your turn
A curve C has parametric equations $x = \frac{1}{3t}, y = \ln 3t, t \ge \frac{1}{3}$ A finite region is bounded by the curve C, the <i>x</i> -axis, the <i>y</i> -axis and the line $y = a$. Given that the volume of the solid formed when this region is rotated 2π radians about the <i>y</i> -axis is $\frac{12\pi}{25}$, find the exact value of a	A curve C has parametric equations $x = \frac{1}{2t}, y = \ln 2t, t \ge \frac{1}{2}$ A finite region is bounded by the curve C, the <i>x</i> -axis, the <i>y</i> -axis and the line $y = a$. Given that the volume of the solid formed when this region is rotated 2π radians about the <i>y</i> -axis is $\frac{24\pi}{49}$, find the exact value of a $a = \ln 7$

Worked example	Your turn
A curve C has parametric equations $x = 2\cos t, y = t^2, \frac{\pi}{2} \le t \le \frac{3\pi}{2}$ A finite region is bounded by the curve C and the <i>y</i> -axis. Find the exact volume of the solid formed when this region is rotated 2π radians about the <i>y</i> -axis	A curve C has parametric equations $x = 2 \sin t$, $y = t^2$, $0 \le t \le \pi$ A finite region is bounded by the curve C and the y- axis. Find the exact volume of the solid formed when this region is rotated 2π radians about the y- axis $2\pi^3$