4.2) Volumes of revolution around the y-axis

A finite region is bounded by the curve with equation $y=8 \ln x-1$, the x-axis, the y axis, and the line $y=2$
Find the exact volume of the solid formed when the region is rotated by 2π radians about the y-axis.

A finite region is bounded by the curve with equation $y=4 \ln x-1$, the x-axis, the y axis, and the line $y=4$
Find the exact volume of the solid formed when the region is rotated by 2π radians about the y-axis.

$$
2 \pi \sqrt{e}\left(e^{2}-1\right)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:
$x=e^{y}-e^{-2 y}$ between $y=0$ and $y=1$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
x=e^{2 y}-e^{-y} \text { between } y=0 \text { and } y=1
$$

$$
\frac{\pi}{4}\left(e^{2}-1\right)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
x=\frac{\sqrt{4-\ln y}}{y} \text { between } y=1 \text { and } y=4
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
x=\frac{\sqrt{5-\ln y}}{y} \text { between } y=1 \text { and } y=5
$$

$$
\frac{\pi}{5}(\ln 5+16)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=\frac{2}{x}-2 \text { between } y=0 \text { and } y=1
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=\frac{1}{x}-1 \text { between } y=0 \text { and } y=1
$$

$\frac{\pi}{2}$

Your turn

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=\frac{2-5 x^{2}}{1-x^{2}} \text { between } y=-1 \text { and } y=1
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=\frac{5-2 x^{2}}{x^{2}-1} \text { between } y=-1 \text { and } y=1
$$

$$
\pi(2+3 \ln 3)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=3 e^{x^{2}} \text { between } y=3 \text { and } y=6
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=2 e^{x^{2}} \text { between } y=2 \text { and } y=4
$$

$$
\pi(4 \ln 2-2)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:
$y=\arcsin \sqrt{x}$ between $y=0$ and $y=\frac{\pi}{2}$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:
$y=\arccos \sqrt{x}$ between $y=0$ and $y=\frac{\pi}{2}$

Worked example

Your turn

A finite region is bounded b the curve with equation $x=$ $\frac{1}{3 y+1}$, the y-axis and the lines $y=1$ and $y=b$. The region is rotated through 2π radians about the y-axis to generate a solid of revolution. Given that the volume of this solid is $\frac{\pi}{60}$, find b

A finite region is bounded b the curve with equation $x=$ $\frac{1}{2 y+1}$, the y-axis and the lines $y=1$ and $y=b$. The region is rotated through 2π radians about the y-axis to generate a solid of revolution. Given that the volume of this solid is $\frac{\pi}{10}$, find b

$$
b=\frac{13}{4}
$$

