Roots of Cubics

By the Fundamental Theorem of Algebra, a cubic equation $ax^3 + bx^2 + cx + d = 0$ always has 3 (potentially repeated) roots, α , β , γ . We saw in the previous chapters that these could be...

- •
- •

Example

Find a cubic equation with roots 2, -1 and -3.

Example

1. α , β and γ are the roots of the cubic equation $2x^3 + 3x^2 - 4x + 2 = 0$. Without solving the equation, find the values of:

- (a) $\alpha + \beta + \gamma$ (b) $\alpha\beta + \beta\gamma + \gamma\alpha$ (c) $\alpha\beta\gamma$
- (d) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

2. The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = 1 - 2i$, $\beta = 1 + 2i$ and $\gamma = 2$. Find integers values for a, b, c and d.

Ex 4b pg 58-59