Roots of Cubics

By the Fundamental Theorem of Algebra, a cubic equation $a x^{3}+b x^{2}+c x+$ $d=0$ always has 3 (potentially repeated) roots, α, β, γ. We saw in the previous chapters that these could be...

Example

Find a cubic equation with roots $2,-1$ and -3 .

Example

1. α, β and γ are the roots of the cubic equation $2 x^{3}+3 x^{2}-4 x+2=0$. Without solving the equation, find the values of:
(a) $\alpha+\beta+\gamma$
(b) $\alpha \beta+\beta \gamma+\gamma \alpha$
(c) $\alpha \beta \gamma$
(d) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
2. The roots of a cubic equation $a x^{3}+b x^{2}+c x+d=0$ are $\alpha=1-2 i$, $\beta=1+2 i$ and $\gamma=2$. Find integers values for a, b, c and d.
