4.2) Roots of a cubic equation

Worked example	Your turn
α , β and γ are the roots of the cubic equation $2x^3 - 3x^2 + 4x - 2 = 0$. Without solving the equation, find the values of: (a) $\alpha + \beta + \gamma$ (b) $\alpha\beta + \beta\gamma + \gamma\alpha$ (c) $\alpha\beta\gamma$ (d) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$	α, β and γ are the roots of the cubic equation $2x^3 + 3x^2 - 4x + 2 = 0.$ Without solving the equation, find the values of: (a) $\alpha + \beta + \gamma$ (b) $\alpha\beta + \beta\gamma + \gamma\alpha$ (c) $\alpha\beta\gamma$ (d) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
	(a) $-\frac{3}{2}$ (b) -2 (c) -1 (d) 2

Worked example	Your turn
α , β and γ are the roots of the cubic equation $2x^3 - 3x^2 + 4x - 6 = 0$. Without solving the equation, find the values of $\alpha^2 \beta^2 \gamma^2$ and $\alpha^3 \beta^3 \gamma^3$	α, β and γ are the roots of the cubic equation $2x^3 + 3x^2 - 4x + 4 = 0.$ Without solving the equation, find the values of $\alpha^2 \beta^2 \gamma^2$ and $\alpha^3 \beta^3 \gamma^3$
	$\alpha^2 \beta^2 \gamma^2 = 4$ and $\alpha^3 \beta^3 \gamma^3 = -8$

Your turn
roots of a cubic equation $+bx^{2} + cx + d = 0$ are $1 - 2i, \beta = 1 + 2i$ and $\gamma = 2$. I integers values for a, b, c and d . a = 1, b = -4, c = 9, d = -10
-

Worked example	Your turn
The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = \frac{2}{3}, \beta = \frac{1}{3}$ and $\gamma = 1$. Find integers values for a, b, c and d .	The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = \frac{3}{2}, \beta = \frac{1}{2}$ and $\gamma = 1$. Find integers values for a, b, c and d . a = 4, b = -12, c = 11, d = -3

Worked example	Your turn
The cubic equation $x^3 - 42x^2 + 336x - 512 = 0$ has roots α , $k\alpha$, and $k^2\alpha$ for some real constant k . Find the values of α and k	The cubic equation $x^3 - 14x^2 + 56x - 64 = 0$ has roots α , $k\alpha$, and $k^2\alpha$ for some real constant k . Find the values of α and k
	$\alpha = 2, k = 2 \text{ or } \alpha = 8, k = \frac{1}{2}$