4.2) Roots of a cubic equation

Your turn

α, β and γ are the roots of the cubic equation $2 x^{3}-3 x^{2}+4 x-2=0$. Without solving the equation, find the values of:
(a) $\alpha+\beta+\gamma$
(b) $\alpha \beta+\beta \gamma+\gamma \alpha$
(c) $\alpha \beta \gamma$
(d) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
α, β and γ are the roots of the cubic equation
$2 x^{3}+3 x^{2}-4 x+2=0$.
Without solving the equation, find the values of:
(a) $\alpha+\beta+\gamma$
(b) $\alpha \beta+\beta \gamma+\gamma \alpha$
(c) $\alpha \beta \gamma$
(d) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(a) $-\frac{3}{2}$
(b) -2
(c) -1
(d) 2

Your turn

α, β and γ are the roots of the cubic equation $2 x^{3}-3 x^{2}+4 x-6=0$. Without solving the equation, find the values of $\alpha^{2} \beta^{2} \gamma^{2}$ and $\alpha^{3} \beta^{3} \gamma^{3}$
α, β and γ are the roots of the cubic equation
$2 x^{3}+3 x^{2}-4 x+4=0$.
Without solving the equation, find the values of $\alpha^{2} \beta^{2} \gamma^{2}$ and $\alpha^{3} \beta^{3} \gamma^{3}$

$$
\alpha^{2} \beta^{2} \gamma^{2}=4 \text { and } \alpha^{3} \beta^{3} \gamma^{3}=-8
$$

Your turn

The roots of a cubic equation $a x^{3}+b x^{2}+c x+d=0$ are $\alpha=1-3 i, \beta=1+3 i$ and $\gamma=3$. Find integers values for a, b, c and d.

The roots of a cubic equation
$a x^{3}+b x^{2}+c x+d=0$ are
$\alpha=1-2 i, \beta=1+2 i$ and $\gamma=2$.
Find integers values for a, b, c and d.

$$
a=1, b=-4, c=9, d=-10
$$

Your turn

The roots of a cubic equation $a x^{3}+b x^{2}+c x+d=0$ are $\alpha=\frac{2}{3}, \beta=\frac{1}{3}$ and $\gamma=1$. Find integers values for a, b, c and d.
$a x^{3}+b x^{2}+c x+d=0$ are
$\alpha=\frac{3}{2}, \beta=\frac{1}{2}$ and $\gamma=1$.
Find integers values for a, b, c and d.

$$
a=4, b=-12, c=11, d=-3
$$

Your turn

The cubic equation $x^{3}-42 x^{2}+336 x-512=0$ has roots $\alpha, k \alpha$, and $k^{2} \alpha$ for some real constant k. Find the values of α and k

The cubic equation $x^{3}-14 x^{2}+56 x-64=0$ has roots $\alpha, k \alpha$, and $k^{2} \alpha$ for some real constant k. Find the values of α and k

$$
\alpha=2, k=2 \text { or } \alpha=8, k=\frac{1}{2}
$$

