Core Pure 2

Volumes of Revolution

Chapter Overview

1: Revolving around the x-axis.
2: Revolving around the y-axis.
3: Volumes of revolution with parametric curves.
4: Modelling

5	5.1	Derive formulae for and calculate volumes of revolution.	Both $\pi \int y^{2} \mathrm{~d} x$ and $\pi \int x^{2} \mathrm{~d} y$ are
required. Students should be able to find a			
volume of revolution given either Cartesian			
equations or parametric equations.			

This chapter involves volumes of revolution but with trickier integration than in CP1.

Revolving around the x-axis

Recap: When revolving around the x-axis, $V=\pi \int_{b}^{a} y^{2} d x$

Example
The region R is bounded by the curve with equation $y=\sin 2 x$, the x-axis and $x=\frac{\pi}{2}$. Find the volume of the solid formed when region R is rotated through 2π radians about the x axis.

Figure 3 shows a sketch of part of the curve with equation $y=1-2 \cos x$, where x is measured in radians. The curve crosses the x-axis at the point A and at the point B.
(a) Find, in terms of π, the x coordinate of the point A and the x coordinate of the point B. (3)

The finite region S enclosed by the curve and the x-axis is shown shaded in Figure 3. The region S is rotated through 2π radians about the x-axis.
(b) Find, by integration, the exact value of the volume of the solid generated.

Revolving around the y-axis

Recap: When revolving around the y-axis, $V=\pi \int_{b}^{a} x^{\mathbf{2}} d \boldsymbol{y}$
i.e. we are just swapping the roles of \boldsymbol{x} and \boldsymbol{y}.

Example
The diagram shows the curve with equation $y=4 \ln x-1$. The finite region R, shown in the diagram, is bounded by the curve, the x-axis, the y-axis and the line $y=4$. Region R is rotated by 2π radians about the y-axis. Use integration to show that the exact value of the volume of the solid generated is $2 \pi \sqrt{e}\left(e^{2}-1\right)$.

