4.1) Volumes of revolution around the x-axis

A finite region is bounded by the curve with equation $y=\sin 4 x$, the x-axis and $x=\frac{\pi}{4}$. Find the volume of the solid formed when the region is rotated through 2π radians about the x-axis.

A finite region is bounded by the curve with equation $y=\sin 2 x$, the x-axis and $x=\frac{\pi}{2}$.
Find the volume of the solid formed when the region is rotated through 2π radians about the x-axis.

$$
\frac{\pi^{2}}{4}
$$

A finite region is bounded by the curve with equation $y=1-2 \sin x(0<x<\pi)$ and the x-axis.
Find the exact volume of the solid formed when the region is rotated through 2π radians about the x-axis.

A finite region is bounded by the curve with equation $y=1-2 \cos x(0<x<\pi)$ and the x-axis.
Find the volume of the solid formed when the region is rotated through 2π radians about the x-axis.

$$
\pi(4 \pi+3 \sqrt{3})
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the x-axis between the given limits:

$$
y=\sqrt{\frac{3 \sin x}{2+\cos x}} \text { between } x=0 \text { and } x=\frac{\pi}{2}
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the x-axis between the given limits:

$$
y=\sqrt{\frac{4 \sin x}{1+\cos x}} \text { between } x=0 \text { and } x=\frac{\pi}{2}
$$

$4 \pi \ln 2$

Your turn

Using integration by parts, find the exact volume of the solid generated when each curve is rotated through 2π radians about the x-axis between the given limits:

$$
y=\frac{\sqrt{\ln x}}{x^{2}} \text { between } x=1 \text { and } x=2
$$

Using integration by parts, find the exact volume of the solid generated when each curve is rotated through 2π radians about the x-axis between the given limits:
$y=\sqrt{x} \sec x$ between $x=0$ and $x=\frac{\pi}{4}$

$$
\frac{\pi}{4}(\pi-\ln 4)
$$

Your turn

A finite region is bounded by the curve with equation $y=\frac{3}{10(2+5 x)}$, the x-axis, and the lines $x=1$ and $x=-2$. Find the exact volume of the solid formed when the region is rotated through 360° about the x-axis.

A finite region is bounded by the curve with equation $y=\frac{10}{3(5+2 x)}$, the x-axis, and the lines $x=-1$ and $x=2$.
Find the exact volume of the solid formed when the region is rotated through 360° about the x-axis.

$$
\frac{100 \pi}{81}
$$

Your turn

A finite region is bounded by the curve with equation $y=x e^{-2 x}$ and the line $y=\frac{1}{3} x$ Find the volume of the solid formed when the region is rotated through 360° about the x-axis.

A finite region is bounded by the curve with equation $y=x e^{-x}$ and the line $y=\frac{1}{4} x$ Find the volume of the solid formed when the region is rotated through 360° about the x-axis.

0.237 (3 sf)

