4.1) Volumes of revolution around the *x*-axis

Worked example	Your turn
A finite region is bounded by the curve with equation $y = \sin 4x$, the x-axis and $x = \frac{\pi}{4}$. Find the volume of the solid formed when the region is rotated through 2π radians about the x-axis.	A finite region is bounded by the curve with equation $y = \sin 2x$, the <i>x</i> -axis and $x = \frac{\pi}{2}$. Find the volume of the solid formed when the region is rotated through 2π radians about the <i>x</i> -axis. $\frac{\pi^2}{4}$

Worked example	Your turn
A finite region is bounded by the curve with equation $y = 1 - 2 \sin x$ ($0 < x < \pi$) and the <i>x</i> -axis. Find the exact volume of the solid formed when the region is rotated through 2π radians about the <i>x</i> -axis.	A finite region is bounded by the curve with equation $y = 1 - 2 \cos x$ ($0 < x < \pi$) and the <i>x</i> -axis. Find the volume of the solid formed when the region is rotated through 2π radians about the <i>x</i> -axis. $\pi(4\pi + 3\sqrt{3})$

Worked example	Your turn
Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>x</i> -axis between the given limits: $y = \sqrt{\frac{3 \sin x}{2 + \cos x}}$ between $x = 0$ and $x = \frac{\pi}{2}$	Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>x</i> -axis between the given limits: $y = \sqrt{\frac{4 \sin x}{1 + \cos x}}$ between $x = 0$ and $x = \frac{\pi}{2}$
	$4\pi \ln 2$

Worked example	Your turn
Using integration by parts, find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>x</i> -axis between the given limits: $y = \frac{\sqrt{\ln x}}{x^2}$ between $x = 1$ and $x = 2$	Using integration by parts, find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>x</i> -axis between the given limits: $y = \sqrt{x} \sec x$ between $x = 0$ and $x = \frac{\pi}{4}$ $\frac{\pi}{4}(\pi - \ln 4)$

Worked example	Your turn
A finite region is bounded by the curve with equation $y = \frac{3}{10(2+5x)}$, the <i>x</i> -axis, and the lines $x = 1$ and $x = -2$. Find the exact volume of the solid formed when the region is rotated through 360° about the <i>x</i> -axis.	A finite region is bounded by the curve with equation $y = \frac{10}{3(5+2x)}$, the <i>x</i> -axis, and the lines x = -1 and $x = 2$. Find the exact volume of the solid formed when the region is rotated through 360° about the <i>x</i> -axis. $\frac{100\pi}{21}$
when the region is rotated through 360°	when the region is rotated through 360° about the <i>x</i> -axis.

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>