4.1) Roots of a quadratic equation

The roots of the quadratic equation $2 x^{2}+5 x+4=0$ are α and β. Without solving the equation, find the values of:
(a) $\alpha+\beta$
(b) $\alpha \beta$
(c) $\frac{1}{\alpha}+\frac{1}{\beta}$
(d) $\alpha^{2}+\beta^{2}$

The roots of the quadratic equation $2 x^{2}-5 x-4=0$ are α and β. Without solving the equation, find the values of:
(a) $\alpha+\beta$
(b) $\alpha \beta$
(c) $\frac{1}{\alpha}+\frac{1}{\beta}$
(d) $\alpha^{2}+\beta^{2}$
(a) $\frac{5}{2}$
(b) -2
(c) $-\frac{5}{4}$
(d) $\frac{41}{4}$

Your turn

The roots of the quadratic equation $6 x^{2}+9 x-2=0$ are α and β. Without solving the equation, find the value of $\alpha^{3}+\beta^{3}$

The roots of the quadratic equation
$6 x^{2}-9 x+2=0$ are α and β. Without solving the equation, find the value of $\alpha^{3}+\beta^{3}$

The roots of a quadratic equation $a x^{2}+b x+c=0$ are $\alpha=\frac{3}{2}$ and $\beta=-\frac{5}{4}$. Find integer values for a, b and c

The roots of a quadratic equation
$a x^{2}+b x+c=0$ are $\alpha=-\frac{3}{2}$ and $\beta=\frac{5}{4}$.
Find integer values for a, b and c

$$
a=8, b=2, c=-15
$$

The equation $a x^{2}+6 x+c=0$, where a and c are real constants, has roots α and α^{*}. Given that $\operatorname{Re}(\alpha)=1$ and $\operatorname{Im}(\alpha)=4 i$, find the values of a and c

The equation $a x^{2}+8 x+c=0$, where a and c are real constants, has roots α and α^{*}. Given that $\operatorname{Re}(\alpha)=2$ and $\operatorname{Im}(\alpha)=3 i$, find the values of a and c

$$
a=-2, c=-26
$$

