4A Roots of Quadratics

1. The roots of the quadratic equation $2 x^{2}-5 x-4=0$ are α and β. Without solving the equation, find the values of:
a) $\alpha+\beta$
b) $\alpha \beta$
C) $\frac{1}{\alpha}+\frac{1}{\beta}$
d) $\alpha^{2}+\beta^{2}$
2. The roots of the quadratic equation $a x^{2}+b x+c=0$ are $\alpha=-\frac{3}{2}$ and $\beta=\frac{5}{4}$. Find integer values for a, b and c.

4B Roots of Cubics

1. If α, β and γ are the roots of the equation $2 x^{3}+3 x^{2}-4 x+2=0$, find the values of:
a) $\alpha+\beta+\gamma$
b) $\alpha \beta+\beta \gamma+\gamma \alpha$
c) $\alpha \beta \gamma$
d) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
2. The roots of a cubic equation $a x^{3}+b x^{2}+c x+d=0$ are

$$
\alpha=1-2 i, \beta=1+2 i \text { and } \gamma=2 .
$$

Find integer values for a, b, c and d.

4C Roots of Quartics

Patterns spotted for polynomials in general:

	Quadratics	Cubics	Quartics
Sum of 'singles'			
Sum of 'doubles'			
Sum of 'triples'			
Sum of 'quadruples'			

1. The equation $x^{4}+2 x^{3}+p x^{2}+q x-60=0, x \in \mathbb{C}, p, q \in \mathbb{R}$, has roots α, β, γ and δ. Given that $\gamma=-2+4 i$ and $\delta=\gamma^{*}$:
a) Show that $\alpha+\beta-2=0$ and that $\alpha \beta+3=0$
b) Hence, find all the roots of the equation and the values of p and q.

4D Expressions Relating to Roots of Polynomials

1.

a) Expand $(\alpha+\beta+\gamma)^{2}$
b) A cubic equation has roots α, β and γ such that $\alpha \beta+\beta \gamma+\gamma \alpha=7$ and $\alpha+\beta+\gamma=-3$. Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.

The sum of the squared singles

| The sum of the
 cubed singles |
| :---: | | The cube of the
 sum of the singles |
| :---: |

2. The three roots of a cubic equation are α, β and γ.

Given that $\alpha \beta \gamma=4, \alpha \beta+\beta \gamma+\gamma \alpha=-5$ and $\alpha+\beta+\gamma=3$, find the value of $(\alpha+3)(\beta+3)(\gamma+3)$.

4E Linear Transformations of Roots

1. The cubic equation

$$
x^{3}-2 x^{2}+3 x-4=0
$$

has roots α, β and γ. Find the equations of the polynomials with roots:
a) $2 \alpha, 2 \beta$ and 2γ

Alternative approach by considering graphical transformations \& substitution (easier)
b) $(\alpha+3),(\beta+3)$ and $(\gamma+3)$
2. The quartic equation $x^{4}-3 x^{3}+15 x+1=0$ has roots α, β, γ and δ. Find the equation with roots $(2 \alpha+1),(2 \beta+1),(2 \gamma+1)$ and $(2 \delta+1)$.

