4A/B Volumes of Revolution

A Reminder from CP1:

1. The region R is bounded by the curve with equation $y=\sin 2 x$, the x -axis and the lines $x=0$ and $x=\frac{\pi}{2}$.

Find the volume of the solid formed when region R is rotated through 2π radians about the x-axis.
2. The diagram shows the curve with equation $y=4 \ln x-1$.

4C Revolutions with Parametrics

1. The curve C shown has parametric equations:

$$
x=t(1+t), \quad y=\frac{1}{1+t}, \quad t \geq 0
$$

The region R is bounded by the curve, the x-axis and the lines $x=0$ and $x=2$.
Find the exact volume of the solid formed when R is rotated 2π radians about the x -axis.

4D Modelling with Volumes of Revolution

1. The diagram shows a model of a goldfish bowl. The cross section of the bowl is described by the curve with parametric equations:

$$
x=2 \sin t, y=2 \cos t+2, \frac{\pi}{6} \leq t \leq \frac{11 \pi}{6}
$$

Where the units of x and y are in cm . The bowl is formed by rotating this curve about the y axis to form a solid of revolution.
a) Find the volume of water required to fill the model to a height of 3 cm .

b) The real bowl has a diameter of 48 cm . Find the volume of water needed to fill it to the corresponding height

