4) Volumes of revolution

4.1) Volumes of revolution around the *x*-axis

4.2) Volumes of revolution around the *y*-axis

4.3) Volumes of revolution of parametrically defined curves

4.4) Modelling with volumes of revolution

4.1) Volumes of revolution around the *x*-axis Chapter CONTENTS

Worked example	Your turn
A finite region is bounded by the curve with equation $y = \sin 4x$, the x-axis and $x = \frac{\pi}{4}$. Find the volume of the solid formed when the region is rotated through 2π radians about the x-axis.	A finite region is bounded by the curve with equation $y = \sin 2x$, the <i>x</i> -axis and $x = \frac{\pi}{2}$. Find the volume of the solid formed when the region is rotated through 2π radians about the <i>x</i> -axis. $\frac{\pi^2}{4}$

Worked example	Your turn
A finite region is bounded by the curve with equation $y = 1 - 2 \sin x$ ($0 < x < \pi$) and the <i>x</i> -axis. Find the exact volume of the solid formed when the region is rotated through 2π radians about the <i>x</i> -axis.	A finite region is bounded by the curve with equation $y = 1 - 2 \cos x$ ($0 < x < \pi$) and the <i>x</i> -axis. Find the volume of the solid formed when the region is rotated through 2π radians about the <i>x</i> -axis. $\pi(4\pi + 3\sqrt{3})$

Worked example	Your turn
Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>x</i> -axis between the given limits: $y = \sqrt{\frac{3 \sin x}{2 + \cos x}}$ between $x = 0$ and $x = \frac{\pi}{2}$	Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>x</i> -axis between the given limits: $y = \sqrt{\frac{4 \sin x}{1 + \cos x}}$ between $x = 0$ and $x = \frac{\pi}{2}$
	4π ln 2

Worked example	Your turn
Using integration by parts, find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>x</i> -axis between the given limits: $y = \frac{\sqrt{\ln x}}{x^2}$ between $x = 1$ and $x = 2$	Using integration by parts, find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>x</i> -axis between the given limits: $y = \sqrt{x} \sec x$ between $x = 0$ and $x = \frac{\pi}{4}$ $\frac{\pi}{4}(\pi - \ln 4)$

Worked example	Your turn
A finite region is bounded by the curve with equation $y = \frac{3}{10(2+5x)}$, the <i>x</i> -axis, and the lines $x = 1$ and $x = -2$. Find the exact volume of the solid formed when the region is rotated through 360° about the <i>x</i> -axis.	A finite region is bounded by the curve with equation $y = \frac{10}{3(5+2x)}$, the <i>x</i> -axis, and the lines x = -1 and $x = 2$. Find the exact volume of the solid formed when the region is rotated through 360° about the <i>x</i> -axis. $\frac{100\pi}{21}$
when the region is rotated through 360°	when the region is rotated through 360° about the <i>x</i> -axis.

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

4.2) Volumes of revolution around the *y*-axis

Chapter CONTENTS

Worked example	Your turn
A finite region is bounded by the curve with equation $y = 8 \ln x - 1$, the <i>x</i> -axis, the <i>y</i> - axis, and the line $y = 2$ Find the exact volume of the solid formed when the region is rotated by 2π radians about the <i>y</i> -axis.	A finite region is bounded by the curve with equation $y = 4 \ln x - 1$, the <i>x</i> -axis, the <i>y</i> - axis, and the line $y = 4$ Find the exact volume of the solid formed when the region is rotated by 2π radians about the <i>y</i> -axis.
	$2\pi\sqrt{e}(e^2-1)$

Worked example	Your turn
Find the exact volume of the solid generated	Find the exact volume of the solid generated
when each curve is rotated through 2π	when each curve is rotated through 2π
radians about the y-axis between the given	radians about the y-axis between the given
limits:	limits:
$x = e^y - e^{-2y}$ between $y = 0$ and $y = 1$	$x = e^{2y} - e^{-y}$ between $y = 0$ and $y = 1$

$$\frac{\pi}{4}(e^2-1)$$

Worked example	Your turn
Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>y</i> -axis between the given limits: $x = \frac{\sqrt{4-\ln y}}{y}$ between $y = 1$ and $y = 4$	Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>y</i> -axis between the given limits: $x = \frac{\sqrt{5-\ln y}}{y}$ between $y = 1$ and $y = 5$ $\frac{\pi}{5}(\ln 5 + 16)$
	5

Worked example	Your turn
Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>y</i> -axis between the given limits: $y = \frac{2}{x} - 2$ between $y = 0$ and $y = 1$	Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>y</i> -axis between the given limits: $y = \frac{1}{x} - 1$ between $y = 0$ and $y = 1$
	$\frac{\pi}{2}$

Worked example	Your turn
Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>y</i> -axis between the given limits: $y = \frac{2-5x^2}{1-x^2}$ between $y = -1$ and $y = 1$	Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>y</i> -axis between the given limits: $y = \frac{5-2x^2}{x^2-1}$ between $y = -1$ and $y = 1$
	$\pi(2+3\ln 3)$

Worked example	Your turn
Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits: $y = 3e^{x^2}$ between $y = 3$ and $y = 6$	Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits: $y = 2e^{x^2}$ between $y = 2$ and $y = 4$
	$\pi(4 \ln 2 - 2)$

Worked example	Your turn
Find the exact volume of the solid generated when each curve is rotated through 2π radians about the <i>y</i> -axis between the given limits: $y = \arcsin \sqrt{x}$ between $y = 0$ and $y = \frac{\pi}{2}$	Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits: $y = \arccos \sqrt{x}$ between $y = 0$ and $y = \frac{\pi}{2}$
	$\frac{3\pi^2}{16}$

Worked example	Your turn
A finite region is bounded b the curve with equation $x = \frac{1}{3y+1}$, the y-axis and the lines $y = 1$ and $y = b$. The region is rotated through 2π radians about the y-axis to generate a solid of revolution. Given that the volume of this solid is $\frac{\pi}{60}$, find b	A finite region is bounded b the curve with equation $x = \frac{1}{2y+1}$, the y-axis and the lines $y = 1$ and $y = b$. The region is rotated through 2π radians about the y-axis to generate a solid of revolution. Given that the volume of this solid is $\frac{\pi}{10}$, find b $b = \frac{13}{4}$

$$b = \frac{13}{4}$$

4.3) Volumes of revolution of parametrically defined curves

Chapter CONTENTS

Worked example	Your turn
The curve C has parametric equations	The curve C has parametric equations
$x = t(1-t), y = \frac{1}{1-t}, t \le 0.$	$x = t(1+t), y = \frac{1}{1+t}, t \ge 0.$
The region R is bounded by C , the x -axis and the	The region R is bounded by C , the x -axis and the
lines $x = 0$ and $x = -2$.	lines $x = 0$ and $x = 2$.
Find the exact volume of the solid formed when <i>R</i>	Find the exact volume of the solid formed when R
is rotated 2π radians about the x-axis.	is rotated 2π radians about the x-axis.
	$\pi(2\ln 2 - \frac{1}{2})$

Worked example	Your turn
A curve C has parametric equations	A curve C has parametric equations
$x = an heta$, $y = ext{sec}^3 heta$, $0 \le heta < rac{\pi}{2}$	$x = an heta$, $y = \sin heta$, $0 \le heta < rac{\pi}{2}$
A finite region is bounded by the curve C, the y- axis, and the lines $y = 1$ and $y = 8$. Find the exact volume of the solid formed when this region is rotated 2π radians about the y-axis.	A finite region is bounded by the curve C , the line $x = \sqrt{3}$ and the <i>x</i> -axis. Find the exact volume of the solid formed when this region is rotated 2π radians about the <i>x</i> -axis. $\pi\sqrt{3} - \frac{1}{3}\pi^2$

Worked example	Your turn
A curve C has parametric equations $x = \frac{1}{3t}, y = \ln 3t, t \ge \frac{1}{3}$ A finite region is bounded by the curve C, the <i>x</i> -axis, the <i>y</i> -axis and the line $y = a$. Given that the volume of the solid formed when this region is rotated 2π radians about the <i>y</i> -axis is $\frac{12\pi}{25}$, find the exact value of a	A curve C has parametric equations $x = \frac{1}{2t}, y = \ln 2t, t \ge \frac{1}{2}$ A finite region is bounded by the curve C, the <i>x</i> -axis, the <i>y</i> -axis and the line $y = a$. Given that the volume of the solid formed when this region is rotated 2π radians about the <i>y</i> -axis is $\frac{24\pi}{49}$, find the exact value of a $a = \ln 7$

Worked example	Your turn
A curve C has parametric equations $x = 2 \cos t$, $y = t^2$, $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$ A finite region is bounded by the curve C and the y- axis. Find the exact volume of the solid formed when this region is rotated 2π radians about the y- axis	A curve C has parametric equations $x = 2 \sin t$, $y = t^2$, $0 \le t \le \pi$ A finite region is bounded by the curve C and the y- axis. Find the exact volume of the solid formed when this region is rotated 2π radians about the y- axis
axis	$2\pi^3$

4.4) Modelling with volumes of revolution Chapter CONTENTS

Worked example	Your turn
diameter of the vase on the diagram is 4 cm. The cross-section of the model is described by the curve with parametric equations $x = 2 \sin 2t$, $y = 4 \cos t + 2$, $0 \le t \le \frac{\pi}{2}$, where the units of x and y are in cm. The vase is formed by rotating this curve about the y-axis to form a solid of revolution. (a) Find the volume of water required to fill the vase to a height of 3cm. The real goldfish bowl has a maximum diameter of 24cm. (b) Find the volume of water required to fill the real goldfish bowl to the corresponding height.	A goldfish bowl is modelled using a diagram. The diameter of the bowl on the diagram is 4 cm. The cross-section of the model is described by the curve with parametric equations $x = 2 \sin t$, $y = 2 \cos t + 2$, $\frac{\pi}{6} \le t \le \frac{11\pi}{6}$, where the units of x and y are in cm. The goldfish bowl is formed by rotating this curve about the y-axis to form a solid of revolution. (a) Find the volume of water required to fill the model to a height of 3cm. The real goldfish bowl has a maximum diameter of 48cm. (b) Find the volume of water required to fill the real goldfish bowl to the corresponding height. (a) $9\pi \ cm^3$ (b) $48900 \ cm^3$ (3 sf)