4) Volumes of revolution

4.1) Volumes of revolution around the x-axis
4.2) Volumes of revolution around the y-axis
4.3) Volumes of revolution of parametrically defined curves
4.4) Modelling with volumes of revolution

4.1) Volumes of revolution around the x-axis

A finite region is bounded by the curve with equation $y=\sin 4 x$, the x-axis and $x=\frac{\pi}{4}$. Find the volume of the solid formed when the region is rotated through 2π radians about the x-axis.

A finite region is bounded by the curve with equation $y=\sin 2 x$, the x-axis and $x=\frac{\pi}{2}$.
Find the volume of the solid formed when the region is rotated through 2π radians about the x-axis.

$$
\frac{\pi^{2}}{4}
$$

A finite region is bounded by the curve with equation $y=1-2 \sin x(0<x<\pi)$ and the x-axis.
Find the exact volume of the solid formed when the region is rotated through 2π radians about the x-axis.

A finite region is bounded by the curve with equation $y=1-2 \cos x(0<x<\pi)$ and the x-axis.
Find the volume of the solid formed when the region is rotated through 2π radians about the x-axis.

$$
\pi(4 \pi+3 \sqrt{3})
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the x-axis between the given limits:

$$
y=\sqrt{\frac{3 \sin x}{2+\cos x}} \text { between } x=0 \text { and } x=\frac{\pi}{2}
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the x-axis between the given limits:

$$
y=\sqrt{\frac{4 \sin x}{1+\cos x}} \text { between } x=0 \text { and } x=\frac{\pi}{2}
$$

$4 \pi \ln 2$

Your turn

Using integration by parts, find the exact volume of the solid generated when each curve is rotated through 2π radians about the x-axis between the given limits:

$$
y=\frac{\sqrt{\ln x}}{x^{2}} \text { between } x=1 \text { and } x=2
$$

Using integration by parts, find the exact volume of the solid generated when each curve is rotated through 2π radians about the x-axis between the given limits:
$y=\sqrt{x} \sec x$ between $x=0$ and $x=\frac{\pi}{4}$

$$
\frac{\pi}{4}(\pi-\ln 4)
$$

Your turn

A finite region is bounded by the curve with equation $y=\frac{3}{10(2+5 x)}$, the x-axis, and the lines $x=1$ and $x=-2$. Find the exact volume of the solid formed when the region is rotated through 360° about the x-axis.

A finite region is bounded by the curve with equation $y=\frac{10}{3(5+2 x)}$, the x-axis, and the lines $x=-1$ and $x=2$.
Find the exact volume of the solid formed when the region is rotated through 360° about the x-axis.

$$
\frac{100 \pi}{81}
$$

Your turn

A finite region is bounded by the curve with equation $y=x e^{-2 x}$ and the line $y=\frac{1}{3} x$ Find the volume of the solid formed when the region is rotated through 360° about the x-axis.

A finite region is bounded by the curve with equation $y=x e^{-x}$ and the line $y=\frac{1}{4} x$ Find the volume of the solid formed when the region is rotated through 360° about the x-axis.

0.237 (3 sf)

A finite region is bounded by the curve with equation $y=8 \ln x-1$, the x-axis, the y axis, and the line $y=2$
Find the exact volume of the solid formed when the region is rotated by 2π radians about the y-axis.

A finite region is bounded by the curve with equation $y=4 \ln x-1$, the x-axis, the y axis, and the line $y=4$
Find the exact volume of the solid formed when the region is rotated by 2π radians about the y-axis.

$$
2 \pi \sqrt{e}\left(e^{2}-1\right)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:
$x=e^{y}-e^{-2 y}$ between $y=0$ and $y=1$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
x=e^{2 y}-e^{-y} \text { between } y=0 \text { and } y=1
$$

$$
\frac{\pi}{4}\left(e^{2}-1\right)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
x=\frac{\sqrt{4-\ln y}}{y} \text { between } y=1 \text { and } y=4
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
x=\frac{\sqrt{5-\ln y}}{y} \text { between } y=1 \text { and } y=5
$$

$$
\frac{\pi}{5}(\ln 5+16)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=\frac{2}{x}-2 \text { between } y=0 \text { and } y=1
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=\frac{1}{x}-1 \text { between } y=0 \text { and } y=1
$$

$\frac{\pi}{2}$

Your turn

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=\frac{2-5 x^{2}}{1-x^{2}} \text { between } y=-1 \text { and } y=1
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=\frac{5-2 x^{2}}{x^{2}-1} \text { between } y=-1 \text { and } y=1
$$

$$
\pi(2+3 \ln 3)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=3 e^{x^{2}} \text { between } y=3 \text { and } y=6
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:

$$
y=2 e^{x^{2}} \text { between } y=2 \text { and } y=4
$$

$$
\pi(4 \ln 2-2)
$$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:
$y=\arcsin \sqrt{x}$ between $y=0$ and $y=\frac{\pi}{2}$

Find the exact volume of the solid generated when each curve is rotated through 2π radians about the y-axis between the given limits:
$y=\arccos \sqrt{x}$ between $y=0$ and $y=\frac{\pi}{2}$

Worked example

Your turn

A finite region is bounded b the curve with equation $x=$ $\frac{1}{3 y+1}$, the y-axis and the lines $y=1$ and $y=b$. The region is rotated through 2π radians about the y-axis to generate a solid of revolution. Given that the volume of this solid is $\frac{\pi}{60}$, find b

A finite region is bounded b the curve with equation $x=$ $\frac{1}{2 y+1}$, the y-axis and the lines $y=1$ and $y=b$. The region is rotated through 2π radians about the y-axis to generate a solid of revolution. Given that the volume of this solid is $\frac{\pi}{10}$, find b

$$
b=\frac{13}{4}
$$

4.3) Volumes of revolution of parametrically defined

The curve C has parametric equations $x=t(1-t), y=\frac{1}{1-t}, t \leq 0$.
The region R is bounded by C, the x-axis and the lines $x=0$ and $x=-2$.
Find the exact volume of the solid formed when R is rotated 2π radians about the x-axis.

The curve C has parametric equations
$x=t(1+t), y=\frac{1}{1+t}, t \geq 0$.
The region R is bounded by C, the x-axis and the lines $x=0$ and $x=2$.
Find the exact volume of the solid formed when R is rotated 2π radians about the x-axis.

$$
\pi\left(2 \ln 2-\frac{1}{2}\right)
$$

Worked example

Your turn

A curve C has parametric equations

$$
x=\tan \theta, y=\sec ^{3} \theta, 0 \leq \theta<\frac{\pi}{2}
$$

A finite region is bounded by the curve C , the y axis, and the lines $y=1$ and $y=8$. Find the exact volume of the solid formed when this region is rotated 2π radians about the y-axis.

A curve C has parametric equations

$$
x=\tan \theta, y=\sin \theta, 0 \leq \theta<\frac{\pi}{2}
$$

A finite region is bounded by the curve C , the line $x=\sqrt{3}$ and the x-axis. Find the exact volume of the solid formed when this region is rotated 2π radians about the x-axis.

$$
\pi \sqrt{3}-\frac{1}{3} \pi^{2}
$$

Worked example

Your turn

$$
\begin{aligned}
& \text { A curve } C \text { has parametric equations } \\
& \qquad x=\frac{1}{3 t}, y=\ln 3 t, t \geq \frac{1}{3}
\end{aligned}
$$

A finite region is bounded by the curve C , the x axis, the y-axis and the line $y=a$.
Given that the volume of the solid formed when this region is rotated 2π radians about the y-axis is $\frac{12 \pi}{25}$, find the exact value of a

A curve C has parametric equations

$$
x=\frac{1}{2 t}, y=\ln 2 t, t \geq \frac{1}{2}
$$

A finite region is bounded by the curve C , the x axis, the y-axis and the line $y=a$.
Given that the volume of the solid formed when this region is rotated 2π radians about the y-axis is $\frac{24 \pi}{49}$, find the exact value of a

$$
a=\ln 7
$$

Worked example

Your turn

A curve C has parametric equations

$$
x=2 \cos t, y=t^{2}, \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}
$$

A finite region is bounded by the curve C and the y axis. Find the exact volume of the solid formed when this region is rotated 2π radians about the y axis

A curve C has parametric equations

$$
x=2 \sin t, y=t^{2}, 0 \leq t \leq \pi
$$

A finite region is bounded by the curve C and the y axis. Find the exact volume of the solid formed when this region is rotated 2π radians about the y axis

$$
2 \pi^{3}
$$

4.4) Modelling with volumes of revolution Chapter CONTENTS

Your turn

A vase is modelled using a diagram. The maximum diameter of the vase on the diagram is 4 cm .
The cross-section of the model is described by the curve with parametric equations
$x=2 \sin 2 t, y=4 \cos t+2,0 \leq t \leq \frac{\pi}{2}$, where the units of x and y are in cm .
The vase is formed by rotating this curve about the y-axis to form a solid of revolution.
(a) Find the volume of water required to fill the vase to a height of 3 cm .
The real goldfish bowl has a maximum diameter of 24 cm .
(b) Find the volume of water required to fill the real goldfish bowl to the corresponding height.

A goldfish bowl is modelled using a diagram. The diameter of the bowl on the diagram is 4 cm .
The cross-section of the model is described by the curve with parametric equations
$x=2 \sin t, y=2 \cos t+2, \frac{\pi}{6} \leq t \leq \frac{11 \pi}{6}$, where the units of x and y are in cm . The goldfish bowl is formed by rotating this curve about the y-axis to form a solid of revolution.
(a) Find the volume of water required to fill the model to a height of 3 cm .
The real goldfish bowl has a maximum diameter of 48 cm .
(b) Find the volume of water required to fill the real goldfish bowl to the corresponding height.
(a) $9 \pi \mathrm{~cm}^{3}$
(b) $48900 \mathrm{~cm}^{3}(3 \mathrm{sf})$

