## 4) Roots of polynomials

4.1) Roots of a quadratic equation
4.2) Roots of a cubic equation
4.3) Roots of a quartic equation
4.4) Expressions relating to the roots of a polynomial
4.5) Linear transformations of roots

The roots of the quadratic equation $2 x^{2}+5 x+4=0$ are $\alpha$ and $\beta$. Without solving the equation, find the values of:
(a) $\alpha+\beta$
(b) $\alpha \beta$
(c) $\frac{1}{\alpha}+\frac{1}{\beta}$
(d) $\alpha^{2}+\beta^{2}$

The roots of the quadratic equation $2 x^{2}-5 x-4=0$ are $\alpha$ and $\beta$. Without solving the equation, find the values of:
(a) $\alpha+\beta$
(b) $\alpha \beta$
(c) $\frac{1}{\alpha}+\frac{1}{\beta}$
(d) $\alpha^{2}+\beta^{2}$
(a) $\frac{5}{2}$
(b) -2
(c) $-\frac{5}{4}$
(d) $\frac{41}{4}$

## Your turn

The roots of the quadratic equation $6 x^{2}+9 x-2=0$ are $\alpha$ and $\beta$. Without solving the equation, find the value of $\alpha^{3}+\beta^{3}$

The roots of the quadratic equation
$6 x^{2}-9 x+2=0$ are $\alpha$ and $\beta$. Without solving the equation, find the value of $\alpha^{3}+\beta^{3}$

The roots of a quadratic equation $a x^{2}+b x+c=0$ are $\alpha=\frac{3}{2}$ and $\beta=-\frac{5}{4}$. Find integer values for $a, b$ and $c$

The roots of a quadratic equation
$a x^{2}+b x+c=0$ are $\alpha=-\frac{3}{2}$ and $\beta=\frac{5}{4}$.
Find integer values for $a, b$ and $c$

$$
a=8, b=2, c=-15
$$

The equation $a x^{2}+6 x+c=0$, where $a$ and $c$ are real constants, has roots $\alpha$ and $\alpha^{*}$. Given that $\operatorname{Re}(\alpha)=1$ and $\operatorname{Im}(\alpha)=4 i$, find the values of $a$ and $c$

The equation $a x^{2}+8 x+c=0$, where $a$ and $c$ are real constants, has roots $\alpha$ and $\alpha^{*}$. Given that $\operatorname{Re}(\alpha)=2$ and $\operatorname{Im}(\alpha)=3 i$, find the values of $a$ and $c$

$$
a=-2, c=-26
$$

## Your turn

$\alpha, \beta$ and $\gamma$ are the roots of the cubic equation $2 x^{3}-3 x^{2}+4 x-2=0$. Without solving the equation, find the values of:
(a) $\alpha+\beta+\gamma$
(b) $\alpha \beta+\beta \gamma+\gamma \alpha$
(c) $\alpha \beta \gamma$
(d) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
$\alpha, \beta$ and $\gamma$ are the roots of the cubic equation
$2 x^{3}+3 x^{2}-4 x+2=0$.
Without solving the equation, find the values of:
(a) $\alpha+\beta+\gamma$
(b) $\alpha \beta+\beta \gamma+\gamma \alpha$
(c) $\alpha \beta \gamma$
(d) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(a) $-\frac{3}{2}$
(b) -2
(c) -1
(d) 2

## Your turn

$\alpha, \beta$ and $\gamma$ are the roots of the cubic equation $2 x^{3}-3 x^{2}+4 x-6=0$. Without solving the equation, find the values of $\alpha^{2} \beta^{2} \gamma^{2}$ and $\alpha^{3} \beta^{3} \gamma^{3}$
$\alpha, \beta$ and $\gamma$ are the roots of the cubic equation
$2 x^{3}+3 x^{2}-4 x+4=0$.
Without solving the equation, find the values of $\alpha^{2} \beta^{2} \gamma^{2}$ and $\alpha^{3} \beta^{3} \gamma^{3}$

$$
\alpha^{2} \beta^{2} \gamma^{2}=4 \text { and } \alpha^{3} \beta^{3} \gamma^{3}=-8
$$

## Your turn

The roots of a cubic equation $a x^{3}+b x^{2}+c x+d=0$ are $\alpha=1-3 i, \beta=1+3 i$ and $\gamma=3$. Find integers values for $a, b, c$ and $d$.

The roots of a cubic equation
$a x^{3}+b x^{2}+c x+d=0$ are
$\alpha=1-2 i, \beta=1+2 i$ and $\gamma=2$.
Find integers values for $a, b, c$ and $d$.

$$
a=1, b=-4, c=9, d=-10
$$

## Your turn

The roots of a cubic equation $a x^{3}+b x^{2}+c x+d=0$ are $\alpha=\frac{2}{3}, \beta=\frac{1}{3}$ and $\gamma=1$. Find integers values for $a, b, c$ and $d$.
$a x^{3}+b x^{2}+c x+d=0$ are
$\alpha=\frac{3}{2}, \beta=\frac{1}{2}$ and $\gamma=1$.
Find integers values for $a, b, c$ and $d$.

$$
a=4, b=-12, c=11, d=-3
$$

## Your turn

The cubic equation $x^{3}-42 x^{2}+336 x-512=0$ has roots $\alpha, k \alpha$, and $k^{2} \alpha$ for some real constant $k$. Find the values of $\alpha$ and $k$

The cubic equation $x^{3}-14 x^{2}+56 x-64=0$ has roots $\alpha, k \alpha$, and $k^{2} \alpha$ for some real constant $k$. Find the values of $\alpha$ and $k$

$$
\alpha=2, k=2 \text { or } \alpha=8, k=\frac{1}{2}
$$

## Your turn

$\alpha, \beta, \gamma$, and $\delta$ are the roots of the quartic equation $x^{4}-3 x^{3}-2 x^{2}+x-4=0$
Find the values of:
(a) $\alpha+\beta+\gamma+\delta$
(b) $\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta$
(c) $\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta$
(d) $\alpha \beta \gamma \delta$
(e) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$
(f) $\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}$
$\alpha, \beta, \gamma$, and $\delta$ are the roots of the quartic equation $x^{4}+3 x^{3}+2 x^{2}-x+4=0$
Find the values of:
(a) $\alpha+\beta+\gamma+\delta$
(b) $\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta$
(c) $\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta$
(d) $\alpha \beta \gamma \delta$
(e) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$
(f) $\alpha^{3} \beta^{3} \gamma^{3} \delta^{3}$
(a) -3
(b) 2
(c) 1
(d) 4
(e) $\frac{1}{4}$
(f) 64

## Your turn

The roots of a quartic equation

$$
a x^{4}+b x^{3}+c x^{2}+d x+e=0
$$

are $\alpha=\frac{2}{3}, \beta=\frac{1}{2}, \gamma=2$ and $\delta=-\frac{3}{2}$
Find integer values of $a, b$ and $c$

The roots of a quartic equation
$a x^{4}+b x^{3}+c x^{2}+d x+e=0$
are $\alpha=-\frac{3}{2}, \beta=-\frac{1}{2}, \gamma=-2$ and $\delta=\frac{2}{3}$
Find integer values of $a, b$ and $c$

$$
a=12, b=40, c=25, d=-20, e=-12
$$

## Your turn

The equation $x^{4}+4 x^{3}+p x^{2}+q x-80=0, x \in$ $\mathbb{C}, p, q \in \mathbb{R}$, has roots $\alpha, \beta, \gamma, \delta$.
Given that $\gamma=-4+2 i$ and $\delta=\gamma^{*}$.
(a) Show that $\alpha+\beta-4=0$ and that $\alpha \beta+4=0$
(b) Hence find all the roots of the quartic equation and find the values of $p$ and $q$.

The equation $x^{4}+2 x^{3}+p x^{2}+q x-60=0, x \in$ $\mathbb{C}, p, q \in \mathbb{R}$, has roots $\alpha, \beta, \gamma, \delta$.
Given that $\gamma=-2+4 i$ and $\delta=\gamma^{*}$.
(a) Show that $\alpha+\beta-2=0$ and that $\alpha \beta+3=0$
(b) Hence find all the roots of the quartic equation and find the values of $p$ and $q$.
(a) Shown
(b) $p=9, q=-52$
4.4) Expressions relating to the roots of a polynomial Chapter CONTENTS

A quadratic equation has roots $\alpha$ and $\beta$. Given that $\alpha+\beta=3$ and $\alpha \beta=4$, find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}$
(b) $\alpha^{2} \beta^{2}$
(c) $\alpha^{2}+\beta^{2}$
(d) $\alpha^{3}+\beta^{3}$

A quadratic equation has roots $\alpha$ and $\beta$. Given that $\alpha+\beta=4$ and $\alpha \beta=3$, find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}$
(b) $\alpha^{2} \beta^{2}$
(c) $\alpha^{2}+\beta^{2}$
(d) $\alpha^{3}+\beta^{3}$
(a) $\frac{4}{3}$
(b) 9
(c) 10
(d) 28

## Your turn

A quadratic equation has roots $\alpha$ and $\beta$. Given that $\alpha+\beta=3$ and $\alpha \beta=4$, find:
(a) $(\alpha+3)(\beta+3)$
(b) $\left(\alpha^{2}-5\right)\left(\beta^{2}-5\right)$

A quadratic equation has roots $\alpha$ and $\beta$. Given that $\alpha+\beta=4$ and $\alpha \beta=3$, find:
(a) $(\alpha+5)(\beta+5)$
(b) $\left(\alpha^{2}-3\right)\left(\beta^{2}-3\right)$
(a) 48
(b) -12

## Worked example

## Your turn

A cubic equation has roots $\alpha, \beta$ and $\gamma$. Given that $\alpha+\beta+\gamma=-2, \alpha \beta+\alpha \gamma+\beta \gamma=3$ and $\alpha \beta \gamma=-4$ find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(b) $\alpha^{2}+\beta^{2}+\gamma^{2}$

A cubic equation has roots $\alpha, \beta$ and $\gamma$.
Given that $\alpha+\beta+\gamma=2, \alpha \beta+\alpha \gamma+\beta \gamma=-3$ and $\alpha \beta \gamma=4$ find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(c) $\alpha^{3}+\beta^{3}+\gamma^{3}$
(d) $(\alpha \beta)^{2}+(\alpha \gamma)^{2}+(\beta \gamma)^{2}$
(b) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(c) $\alpha^{3}+\beta^{3}+\gamma^{3}$
(d) $(\alpha \beta)^{2}+(\alpha \gamma)^{2}+(\beta \gamma)^{2}$
(e) $\alpha^{3} \beta^{3} \gamma^{3}$
(a) $-\frac{3}{4}$
(b) 10
(c) 38
(d) -7
(e) 64

## Worked example

## Your turn

A cubic equation has roots $\alpha, \beta$ and $\gamma$. Given that $\alpha+\beta+\gamma=\frac{1}{2}, \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{3}{4}$ and $\alpha \beta \gamma=\frac{2}{5}$ find:
(a) $(\alpha+3)(\beta+3)(\gamma+3)$
(b) $(2-\alpha)(2-\beta)(2-\gamma)$

A cubic equation has roots $\alpha, \beta$ and $\gamma$.
Given that $\alpha+\beta+\gamma=-\frac{1}{2}, \alpha \beta+\alpha \gamma+\beta \gamma=\frac{3}{4}$ and
$\alpha \beta \gamma=-\frac{2}{5}$ find:
(a) $(\alpha+2)(\beta+2)(\gamma+2)$
(b) $(1-\alpha)(1-\beta)(1-\gamma)$
(9) $\frac{\pi_{10}^{2}}{10}$
(b) $\frac{53}{20}$

## Worked example

## Your turn

A cubic equation has roots $\alpha, \beta$ and $\gamma$.
Given that $\alpha+\beta+\gamma=\frac{1}{2}, \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{3}{4}$ and $\alpha \beta \gamma=\frac{2}{5}$ find $(\alpha \beta)^{3}+(\alpha \gamma)^{3}+(\beta \gamma)^{3}$

A cubic equation has roots $\alpha, \beta$ and $\gamma$.
Given that $\alpha+\beta+\gamma=-\frac{1}{2}, \alpha \beta+\alpha \gamma+\beta \gamma=\frac{3}{4}$ and
$\alpha \beta \gamma=-\frac{2}{5}$ find $(\alpha \beta)^{3}+(\alpha \gamma)^{3}+(\beta \gamma)^{3}$

$$
\frac{723}{1600}
$$

The three roots of a cubic equation are $\alpha, \beta$ and $\gamma$. Given that $\alpha \beta \gamma=5, \alpha \beta+\beta \gamma+\gamma \alpha=-4$ and $\alpha+\beta+\gamma=3$, find the value of $(\alpha+2)(\beta+2)(\gamma+2)$

The three roots of a cubic equation are $\alpha, \beta$ and $\gamma$. Given that $\alpha \beta \gamma=4, \alpha \beta+\beta \gamma+\gamma \alpha=-5$ and $\alpha+\beta+\gamma=3$, find the value of
$(\alpha+3)(\beta+3)(\gamma+3)$

A quartic equation has roots $\alpha, \beta, \gamma$ and $\delta$ Given that $\sum \alpha=-\frac{1}{2}, \sum \alpha \beta=\frac{3}{4}, \sum \alpha \beta \gamma=\frac{1}{5}$ and $\alpha \beta \gamma \delta=-\frac{4}{3}$, find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$
(b) $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$
(c) $\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}$

A quartic equation has roots $\alpha, \beta, \gamma$ and $\delta$
Given that $\sum \alpha=\frac{1}{2}, \sum \alpha \beta=-\frac{3}{4}, \sum \alpha \beta \gamma=-\frac{1}{5}$ and $\alpha \beta \gamma \delta=\frac{4}{3}$, find:
(a) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$
(b) $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$
(c) $\alpha^{3} \beta^{3} \gamma^{3} \delta^{3}$
(a) $-\frac{3}{20}$
(b) $\frac{7}{4}$
(c) $\frac{64}{27}$

## Your turn

A quartic equation has roots $\alpha, \beta, \gamma$ and $\delta$ Given that $\sum \alpha=-\frac{1}{2}, \sum \alpha \beta=\frac{3}{4}, \sum \alpha \beta \gamma=\frac{1}{5}$ and $\alpha \beta \gamma \delta=-\frac{4}{3}$, find:
(a) $(\alpha+2)(\beta+2)(\gamma+2)(\delta+2)$

A quartic equation has roots $\alpha, \beta, \gamma$ and $\delta$
Given that $\sum \alpha=\frac{1}{2}, \sum \alpha \beta=-\frac{3}{4}, \sum \alpha \beta \gamma=-\frac{1}{5}$ and
$\alpha \beta \gamma \delta=\frac{4}{3}$, find:
(a) $(\alpha+1)(\beta+1)(\gamma+1)(\delta+1)$
(b) $(1-\alpha)(1-\beta)(1-\gamma)(1-\delta)$
(a) $\frac{113}{60}$
(b) $\frac{77}{60}$

## Your turn

A quartic equation has roots $\alpha, \beta, \gamma$ and $\delta$ Given that $\sum \alpha=-\frac{1}{2}, \sum \alpha \beta=\frac{3}{4}, \sum \alpha \beta \gamma=\frac{1}{5}$ and $\alpha \beta \gamma \delta=-\frac{4}{3}$, find

$$
(\alpha \beta)^{2}+(\alpha \gamma)^{2}+(\alpha \delta)^{2}+(\beta \gamma)^{2}+(\beta \delta)^{2}+(\gamma \delta)^{2}
$$

A quartic equation has roots $\alpha, \beta, \gamma$ and $\delta$
Given that $\sum \alpha=\frac{1}{2}, \sum \alpha \beta=-\frac{3}{4}, \sum \alpha \beta \gamma=-\frac{1}{5}$ and $\alpha \beta \gamma \delta=\frac{4}{3}$, find

$$
(\alpha \beta)^{2}+(\alpha \gamma)^{2}+(\alpha \delta)^{2}+(\beta \gamma)^{2}+(\beta \delta)^{2}+(\gamma \delta)^{2}
$$

$$
\frac{823}{240}
$$

## Your turn

A quartic equation has roots $\alpha, \beta, \gamma$ and $\delta$ Given that $\sum \alpha=-\frac{1}{2}, \sum \alpha \beta=\frac{3}{4}, \sum \alpha \beta \gamma=\frac{1}{5}$ and $\alpha \beta \gamma \delta=-\frac{4}{3}$, find

$$
(\alpha \beta \gamma)^{2}+(\alpha \beta \delta)^{2}+(\alpha \gamma \delta)^{2}+(\beta \gamma \delta)^{2}
$$

A quartic equation has roots $\alpha, \beta, \gamma$ and $\delta$
Given that $\sum \alpha=\frac{1}{2}, \sum \alpha \beta=-\frac{3}{4}, \sum \alpha \beta \gamma=-\frac{1}{5}$ and $\alpha \beta \gamma \delta=\frac{4}{3}$, find

$$
(\alpha \beta \gamma)^{2}+(\alpha \beta \delta)^{2}+(\alpha \gamma \delta)^{2}+(\beta \gamma \delta)^{2}
$$

## Your turn

The quadratic equation $x^{2}+3 x-10=0$ has roots $\alpha$ and $\beta$.
Without finding the roots, determine the equation with roots $\alpha-2$ and $\beta-2$

The quadratic equation $x^{2}-3 x-10=0$ has roots $\alpha$ and $\beta$.
Without finding the roots, determine the equation with roots $\alpha-1$ and $\beta-1$

$$
w^{2}-w-12=0
$$

## Your turn

The cubic equation $x^{3}+2 x^{2}-3 x+4=0$ has roots $\alpha, \beta$ and $\gamma$. Find the equation of the polynomial with roots:
$3 \alpha, 3 \beta$ and $3 \gamma$

The cubic equation $x^{3}-2 x^{2}+3 x-4=0$
has roots $\alpha, \beta$ and $\gamma$. Find the equation of the polynomial with roots:
$2 \alpha, 2 \beta$ and $2 \gamma$

$$
w^{3}-4 w^{2}+12 w-32=0
$$

## Your turn

The cubic equation $x^{3}+2 x^{2}-3 x+4=0$ has roots $\alpha, \beta$ and $\gamma$. Find the equation of the polynomial with roots:

$$
\alpha-2, \beta-2 \text { and } \gamma-2
$$

The cubic equation $x^{3}-2 x^{2}+3 x-4=0$
has roots $\alpha, \beta$ and $\gamma$. Find the equation of the polynomial with roots:

$$
\begin{gathered}
\alpha+3, \beta+3 \text { and } \gamma+3 \\
w^{3}-11 w^{2}+42 w-58=0
\end{gathered}
$$

## Your turn

The cubic equation $x^{3}+2 x^{2}-4=0$ has roots $\alpha, \beta, \gamma, \delta$. Find the equation with roots $(2 \alpha+1)$, $(2 \beta+1),(2 \gamma+1)$ and $(2 \delta+1)$

The cubic equation $x^{3}-2 x^{2}+4=0$ has roots $\alpha, \beta, \gamma, \delta$. Find the equation with roots ( $3 \alpha-1$ ), $(3 \beta-1),(3 \gamma-1)$ and $(3 \delta-1)$

$$
w^{3}-3 w^{2}-9 w+103=0
$$

## Your turn

The quartic equation $x^{4}+3 x^{3}-x^{2}-15 x-1=0$ has roots $\alpha, \beta, \gamma$ and $\delta$. Find the equation of the polynomial with roots:

$$
(3 \alpha-1),(3 \beta-1),(3 \gamma-1) \text { and }(3 \delta-1)
$$

The quartic equation $x^{4}-3 x^{3}+15 x+1=0$ has roots $\alpha, \beta, \gamma$ and $\delta$. Find the equation of the polynomial with roots:

$$
\begin{gathered}
(2 \alpha+1),(2 \beta+1),(2 \gamma+1) \text { and }(2 \delta+1) \\
w^{4}-10 w^{3}+24 w^{2}+98 w-97=0
\end{gathered}
$$

