4) Roots of polynomials

4.1) Roots of a quadratic equation

4.2) Roots of a cubic equation

4.3) Roots of a quartic equation

4.4) Expressions relating to the roots of a polynomial

4.5) Linear transformations of roots

4.1) Roots of a quadratic equation Chapter CONTENTS

Worked example	Your turn
The roots of the quadratic equation $2x^2 + 5x + 4 = 0$ are α and β . Without solving the equation, find the values of: (a) $\alpha + \beta$ (b) $\alpha\beta$ (c) $\frac{1}{\alpha} + \frac{1}{\beta}$ (d) $\alpha^2 + \beta^2$	The roots of the quadratic equation $2x^2 - 5x - 4 = 0$ are α and β . Without solving the equation, find the values of: (a) $\alpha + \beta$ (b) $\alpha\beta$ (c) $\frac{1}{\alpha} + \frac{1}{\beta}$ (d) $\alpha^2 + \beta^2$ (a) $\frac{5}{2}$ (b) -2 (c) $-\frac{5}{4}$ (d) $\frac{41}{4}$

Worked example	Your turn
The roots of the quadratic equation $6x^2 + 9x - 2 = 0$ are α and β . Without solving the equation, find the value of $\alpha^3 + \beta^3$	The roots of the quadratic equation $6x^2 - 9x + 2 = 0$ are α and β . Without solving the equation, find the value of $\alpha^3 + \beta^3$
	$\frac{15}{8}$

Worked example	Your turn
The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = \frac{3}{2}$ and $\beta = -\frac{5}{4}$. Find integer values for a, b and c	The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = -\frac{3}{2}$ and $\beta = \frac{5}{4}$. Find integer values for a, b and c
	a = 8, b = 2, c = -15

Worked example	Your turn
The equation $ax^2 + 6x + c = 0$, where a and c are real constants, has roots α and α^* . Given that $Re(\alpha) = 1$ and $Im(\alpha) = 4i$, find the values of a and c	The equation $ax^2 + 8x + c = 0$, where a and c are real constants, has roots α and α^* . Given that $Re(\alpha) = 2$ and $Im(\alpha) = 3i$, find the values of a and c
	a = -2, c = -26

4.2) Roots of a cubic equation

Chapter CONTENTS

Worked example	Your turn
α , β and γ are the roots of the cubic equation $2x^3 - 3x^2 + 4x - 2 = 0$. Without solving the equation, find the values of: (a) $\alpha + \beta + \gamma$ (b) $\alpha\beta + \beta\gamma + \gamma\alpha$ (c) $\alpha\beta\gamma$ (d) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$	α , β and γ are the roots of the cubic equation $2x^3 + 3x^2 - 4x + 2 = 0$. Without solving the equation, find the values of: (a) $\alpha + \beta + \gamma$ (b) $\alpha\beta + \beta\gamma + \gamma\alpha$ (c) $\alpha\beta\gamma$ (d) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
	(a) $-\frac{3}{2}$ (b) -2 (c) -1 (d) 2

Worked example	Your turn
α , β and γ are the roots of the cubic equation $2x^3 - 3x^2 + 4x - 6 = 0.$ Without solving the equation, find the values of $\alpha^2 \beta^2 \gamma^2$ and $\alpha^3 \beta^3 \gamma^3$	α , β and γ are the roots of the cubic equation $2x^3 + 3x^2 - 4x + 4 = 0$. Without solving the equation, find the values of $\alpha^2 \beta^2 \gamma^2$ and $\alpha^3 \beta^3 \gamma^3$
	$\alpha^2 \beta^2 \gamma^2 = 4$ and $\alpha^3 \beta^3 \gamma^3 = -8$

Worked example	Your turn
The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = 1 - 3i, \beta = 1 + 3i$ and $\gamma = 3$. Find integers values for a, b, c and d .	The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = 1 - 2i, \beta = 1 + 2i$ and $\gamma = 2$. Find integers values for a, b, c and d . a = 1, b = -4, c = 9, d = -10

Worked example	Your turn
The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = \frac{2}{3}, \beta = \frac{1}{3}$ and $\gamma = 1$. Find integers values for a, b, c and d .	The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = \frac{3}{2}, \beta = \frac{1}{2}$ and $\gamma = 1$. Find integers values for a, b, c and d . a = 4, b = -12, c = 11, d = -3

Worked example	Your turn
The cubic equation $x^3 - 42x^2 + 336x - 512 = 0$ has roots α , $k\alpha$, and $k^2\alpha$ for some real constant k . Find the values of α and k	The cubic equation $x^3 - 14x^2 + 56x - 64 = 0$ has roots α , $k\alpha$, and $k^2\alpha$ for some real constant k . Find the values of α and k
	$\alpha = 2, k = 2 \text{ or } \alpha = 8, k = \frac{1}{2}$

4.3) Roots of a quartic equation

Chapter CONTENTS

Worked example	Your turn
$a, \beta, \gamma, \text{ and } \delta \text{ are the roots of the quartic equation} x^4 - 3x^3 - 2x^2 + x - 4 = 0$ Find the values of: (a) $a + \beta + \gamma + \delta$ (b) $a\beta + a\gamma + a\delta + \beta\gamma + \beta\delta + \gamma\delta$ (c) $a\beta\gamma + a\beta\delta + a\gamma\delta + \beta\gamma\delta$ (d) $a\beta\gamma\delta$ (e) $\frac{1}{a} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (f) $a^2\beta^2\gamma^2\delta^2$	a, β , γ , and δ are the roots of the quartic equation $x^4 + 3x^3 + 2x^2 - x + 4 = 0$ Find the values of: (a) $\alpha + \beta + \gamma + \delta$ (b) $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ (c) $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta$ (d) $\alpha\beta\gamma\delta$ (e) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (f) $\alpha^3\beta^3\gamma^3\delta^3$ (a) - 3 (b) 2 (c) 1 (d) 4 (e) $\frac{1}{4}$ (f) 64

Worked example	Your turn
The roots of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ are $\alpha = \frac{2}{3}, \beta = \frac{1}{2}, \gamma = 2$ and $\delta = -\frac{3}{2}$ Find integer values of a, b and c	The roots of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ are $\alpha = -\frac{3}{2}, \beta = -\frac{1}{2}, \gamma = -2$ and $\delta = \frac{2}{3}$ Find integer values of a, b and c a = 12, b = 40, c = 25, d = -20, e = -12

Worked example	Your turn
The equation $x^4 + 4x^3 + px^2 + qx - 80 = 0, x \in \mathbb{C}, p, q \in \mathbb{R}$, has roots $\alpha, \beta, \gamma, \delta$. Given that $\gamma = -4 + 2i$ and $\delta = \gamma^*$. (a) Show that $\alpha + \beta - 4 = 0$ and that $\alpha\beta + 4 = 0$ (b) Hence find all the roots of the quartic equation and find the values of p and q .	The equation $x^4 + 2x^3 + px^2 + qx - 60 = 0, x \in \mathbb{C}, p, q \in \mathbb{R}$, has roots $\alpha, \beta, \gamma, \delta$. Given that $\gamma = -2 + 4i$ and $\delta = \gamma^*$. (a) Show that $\alpha + \beta - 2 = 0$ and that $\alpha\beta + 3 = 0$ (b) Hence find all the roots of the quartic equation and find the values of p and q . (a) Shown (b) $p = 9, q = -52$

4.4) Expressions relating to the roots of a polynomial Chapter CONTENTS

Worked example	Your turn
Worked example A quadratic equation has roots α and β . Given that $\alpha + \beta = 3$ and $\alpha\beta = 4$, find: (a) $\frac{1}{\alpha} + \frac{1}{\beta}$ (b) $\alpha^2\beta^2$ (c) $\alpha^2 + \beta^2$ (d) $\alpha^3 + \beta^3$	Your turn A quadratic equation has roots α and β . Given that $\alpha + \beta = 4$ and $\alpha\beta = 3$, find: (a) $\frac{1}{\alpha} + \frac{1}{\beta}$ (b) $\alpha^2\beta^2$ (c) $\alpha^2 + \beta^2$ (d) $\alpha^3 + \beta^3$ (a) $\frac{4}{3}$ (b) 9 (c) 10 (d) 28

Worked example	Your turn
A quadratic equation has roots α and β . Given that $\alpha + \beta = 3$ and $\alpha\beta = 4$, find: (a) $(\alpha + 3)(\beta + 3)$ (b) $(\alpha^2 - 5)(\beta^2 - 5)$	A quadratic equation has roots α and β . Given that $\alpha + \beta = 4$ and $\alpha\beta = 3$, find: (a) $(\alpha + 5)(\beta + 5)$ (b) $(\alpha^2 - 3)(\beta^2 - 3)$ (a) 48 (b) -12

vorkeu example	Your turn
A cubic equation has roots α, β and γ . Given that $\alpha + \beta + \gamma = -2, \alpha\beta + \alpha\gamma + \beta\gamma = 3$ and $\alpha\beta\gamma = -4$ find: (a) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ (b) $\alpha^2 + \beta^2 + \gamma^2$ (c) $\alpha^3 + \beta^3 + \gamma^3$ (d) $(\alpha\beta)^2 + (\alpha\gamma)^2 + (\beta\gamma)^2$ (e) $\alpha^2\beta^2\gamma^2$ (a) $-\frac{3}{4}$ (b) 10 (c) 38 (d) -7 (e) 64 (c) $\alpha^3 + \beta^3 + \beta$	tion has roots α , β and γ . + β + γ = 2, $\alpha\beta$ + $\alpha\gamma$ + $\beta\gamma$ = -3 and 1: + γ^{2} + γ^{3} ($\alpha\gamma$) ² + ($\beta\gamma$) ²

Worked example	Your turn
A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = \frac{1}{2}$, $\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{4}$ and $\alpha\beta\gamma = \frac{2}{5}$ find: (a) $(\alpha + 3)(\beta + 3)(\gamma + 3)$ (b) $(2 - \alpha)(2 - \beta)(2 - \gamma)$	A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = -\frac{1}{2}$, $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{3}{4}$ and $\alpha\beta\gamma = -\frac{2}{5}$ find: (a) $(\alpha + 2)(\beta + 2)(\gamma + 2)$ (b) $(1 - \alpha)(1 - \beta)(1 - \gamma)$
$(0)(2 \ u)(2 \ p)(2 \ r)$	(a) $\frac{71}{10}$ (b) $\frac{53}{20}$

Worked example	Your turn
A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = \frac{1}{2}$, $\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{4}$ and $\alpha\beta\gamma = \frac{2}{2}$ find $(\alpha\beta)^3 + (\alpha\gamma)^3 + (\beta\gamma)^3$	A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = -\frac{1}{2}$, $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{3}{4}$ and $\alpha\beta\gamma = -\frac{2}{r}$ find $(\alpha\beta)^3 + (\alpha\gamma)^3 + (\beta\gamma)^3$
	⁵ 723 1600

Worked example	Your turn
Worked example The three roots of a cubic equation are α , β and γ . Given that $\alpha\beta\gamma = 5$, $\alpha\beta + \beta\gamma + \gamma\alpha = -4$ and $\alpha + \beta + \gamma = 3$, find the value of $(\alpha + 2)(\beta + 2)(\gamma + 2)$	Your turnThe three roots of a cubic equation are α, β and γ .Given that $\alpha\beta\gamma = 4, \alpha\beta + \beta\gamma + \gamma\alpha = -5$ and $\alpha + \beta + \gamma = 3$, find the value of $(\alpha + 3)(\beta + 3)(\gamma + 3)$ 43

Worked example	Your turn
A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = -\frac{1}{2}$, $\sum \alpha \beta = \frac{3}{4}$, $\sum \alpha \beta \gamma = \frac{1}{5}$ and $\alpha \beta \gamma \delta = -\frac{4}{3}$, find: (a) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (b) $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ (c) $\alpha^2 \beta^2 \gamma^2 \delta^2$	A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = \frac{1}{2}$, $\sum \alpha \beta = -\frac{3}{4}$, $\sum \alpha \beta \gamma = -\frac{1}{5}$ and $\alpha \beta \gamma \delta = \frac{4}{3}$, find: (a) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (b) $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ (c) $\alpha^3 \beta^3 \gamma^3 \delta^3$ (a) $-\frac{3}{20}$ (b) $\frac{7}{4}$ (c) $\frac{64}{27}$

Worked example	Your turn
A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = -\frac{1}{2}$, $\sum \alpha \beta = \frac{3}{4}$, $\sum \alpha \beta \gamma = \frac{1}{5}$ and $\alpha \beta \gamma \delta = -\frac{4}{3}$, find: (a) $(\alpha + 2)(\beta + 2)(\gamma + 2)(\delta + 2)$	A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = \frac{1}{2}$, $\sum \alpha \beta = -\frac{3}{4}$, $\sum \alpha \beta \gamma = -\frac{1}{5}$ and $\alpha \beta \gamma \delta = \frac{4}{3}$, find: (a) $(\alpha + 1)(\beta + 1)(\gamma + 1)(\delta + 1)$
(a) $(\alpha + 2)(\beta + 2)(\gamma + 2)(\delta + 2)$ (b) $(2 - \alpha)(2 - \beta)(2 - \gamma)(2 - \delta)$	(a) $(\alpha + 1)(\beta + 1)(\gamma + 1)(0 + 1)$ (b) $(1 - \alpha)(1 - \beta)(1 - \gamma)(1 - \delta)$ (a) $\frac{113}{60}$ (b) $\frac{77}{60}$

Worked example	Your turn
A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = -\frac{1}{2}$, $\sum \alpha \beta = \frac{3}{4}$, $\sum \alpha \beta \gamma = \frac{1}{5}$ and $\alpha \beta \gamma \delta = -\frac{4}{3}$, find $(\alpha \beta)^2 + (\alpha \gamma)^2 + (\alpha \delta)^2 + (\beta \gamma)^2 + (\beta \delta)^2 + (\gamma \delta)^2$	A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = \frac{1}{2}$, $\sum \alpha \beta = -\frac{3}{4}$, $\sum \alpha \beta \gamma = -\frac{1}{5}$ and $\alpha \beta \gamma \delta = \frac{4}{3}$, find $(\alpha \beta)^2 + (\alpha \gamma)^2 + (\alpha \delta)^2 + (\beta \gamma)^2 + (\beta \delta)^2 + (\gamma \delta)^2$
	823 240

Worked example	Your turn
A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = -\frac{1}{2}$, $\sum \alpha \beta = \frac{3}{4}$, $\sum \alpha \beta \gamma = \frac{1}{5}$ and $\alpha \beta \gamma \delta = -\frac{4}{3}$, find $(\alpha \beta \gamma)^2 + (\alpha \beta \delta)^2 + (\alpha \gamma \delta)^2 + (\beta \gamma \delta)^2$	A quartic equation has roots α , β , γ and δ Given that $\sum \alpha = \frac{1}{2}$, $\sum \alpha \beta = -\frac{3}{4}$, $\sum \alpha \beta \gamma = -\frac{1}{5}$ and $\alpha \beta \gamma \delta = \frac{4}{3}$, find $(\alpha \beta \gamma)^2 + (\alpha \beta \delta)^2 + (\alpha \gamma \delta)^2 + (\beta \gamma \delta)^2$
	51 25

4.5) Linear transformations of roots Chapter CONTENTS

Worked example	Your turn
The quadratic equation $x^2 + 3x - 10 = 0$ has roots α and β . Without finding the roots, determine the equation with roots $\alpha - 2$ and $\beta - 2$	The quadratic equation $x^2 - 3x - 10 = 0$ has roots α and β . Without finding the roots, determine the equation with roots $\alpha - 1$ and $\beta - 1$ $w^2 - w - 12 = 0$

Worked example	Your turn
The cubic equation $x^3 + 2x^2 - 3x + 4 = 0$ has roots α , β and γ . Find the equation of the polynomial with roots: 3α , 3β and 3γ	The cubic equation $x^3 - 2x^2 + 3x - 4 = 0$ has roots α, β and γ . Find the equation of the polynomial with roots: $2\alpha, 2\beta$ and 2γ $w^3 - 4w^2 + 12w - 32 = 0$

Worked example	Your turn
The cubic equation $x^3 + 2x^2 - 3x + 4 = 0$ has roots α , β and γ . Find the equation of the polynomial with roots: $\alpha - 2$, $\beta - 2$ and $\gamma - 2$	The cubic equation $x^3 - 2x^2 + 3x - 4 = 0$ has roots α, β and γ . Find the equation of the polynomial with roots: $\alpha + 3, \beta + 3$ and $\gamma + 3$ $w^3 - 11w^2 + 42w - 58 = 0$

Worked example	Your turn
The cubic equation $x^3 + 2x^2 - 4 = 0$ has roots $\alpha, \beta, \gamma, \delta$. Find the equation with roots $(2\alpha + 1)$, $(2\beta + 1), (2\gamma + 1)$ and $(2\delta + 1)$	The cubic equation $x^3 - 2x^2 + 4 = 0$ has roots $\alpha, \beta, \gamma, \delta$. Find the equation with roots $(3\alpha - 1)$, $(3\beta - 1), (3\gamma - 1)$ and $(3\delta - 1)$
	$w^3 - 3w^2 - 9w + 103 = 0$

Your turn
The quartic equation $x^4 - 3x^3 + 15x + 1 = 0$ has roots α , β , γ and δ . Find the equation of the polynomial with roots: $(2\alpha + 1)$, $(2\beta + 1)$, $(2\gamma + 1)$ and $(2\delta + 1)$ $w^4 - 10w^3 + 24w^2 + 98w - 97 = 0$