Solving using partial fractions

We have already seen in Pure Year 2 how we can use partial fractions to integrate. We can use this to further expand our repertoire of integration techniques for expressions of the form $\frac{1}{a^{2} \pm x^{2}}$ and $\frac{1}{\sqrt{a^{2} \pm x^{2}}}$

Example
Prove that $\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|+c$

When you write as partial fractions, ensure you have the most general possible non-top heavy fraction, i.e. the 'order' (i.e. maximum power) of the numerator is one less than the denominator.

$$
\frac{1}{x\left(x^{2}+1\right)} \equiv \frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

Example

Show that $\int \frac{1+x}{x^{3}+9 x} d x=A \ln \left(\frac{x^{2}}{x^{2}+9}\right)+B \arctan \left(\frac{x}{3}\right)+c$, where A and B are constants to be found.

If the fraction is top-heavy, you'll have a quotient. As per Pure Year 2, if the order of numerator and denominator is the same, you'll need an extra constant term. If the power is 1 greater in the numerator, you'll need a quotient of $A x+B$, and so on.

$$
\frac{4 x^{2}+x}{x^{2}+x}=\frac{4 x^{2}+x}{x(x+1)}=A+\frac{B}{x}+\frac{C}{x+1}
$$

Test Your Understanding
(a) Express $\frac{x^{4}+x}{x^{4}+5 x^{2}+6}$ as partial fractions.
(b) Hence find $\int \frac{x^{4}+x}{x^{4}+5 x^{2}+6} d x$.

