3C Differentiating Inverse Trig Functions

1. Show that $\frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}}$
2. $\frac{d}{d x}(\arccos x)=-\frac{1}{\sqrt{1-x^{2}}}$
3. Find $\frac{d}{d x}(\arctan x)$
4. Given $y=\arcsin x^{2}$, find $\frac{d y}{d x}$
a) Using implicit differentiation
b) Using the chain rule and the formula for $\frac{d}{d x}(\arcsin x)$

A Key point on the chain rule above: don't just multiply by the derivative! (as x does not remain x in the derivative)
5. Given $y=\arctan \left(\frac{1-x}{1+x}\right)$, find $\frac{d y}{d x}$
6. Show that

$$
\sin (\arccos x)=\sqrt{1-x^{2}}
$$

