Examples

1. Show that if $y=\arcsin x$, then $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$

Remember that we're trying to turn $\cos y$ into an expression in terms of x; we have to use $x=\sin y$ in some way. You then might think "Oh, I know an identity that relates $\cos y$ and $\sin y!"$
2. Given that $y=\arcsin x^{2}$ find $\frac{d y}{d x}$

$\frac{d}{d x}(\arcsin x)$	$=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}(\arccos x)$	$=-\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}(\arctan x)$	$=\frac{1}{1+x^{2}}$

Test Your Understanding

1. Given that $y=\operatorname{arcsec} 2 x$, show that $y=\frac{1}{x \sqrt{4 x^{2}-1}}$
2. Given that $y=\arctan \left(\frac{1-x}{1+x}\right)$, find $\frac{d y}{d x}$
