Differentiating inverse trigonometric functions

Examples

1. Show that if
$$y = \arcsin x$$
, then $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$

Remember that we're trying to turn $\cos y$ into an expression in terms of x; we have to use $x = \sin y$ in some way. You then might think "Oh, I know an identity that relates $\cos y$ and $\sin y$!"

2. Given that $y = \arcsin x^2 \operatorname{find} \frac{dy}{dx}$

$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1 - x^2}}$$
$$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1 - x^2}}$$
$$\frac{d}{dx}(\arctan x) = \frac{1}{1 + x^2}$$

Test Your Understanding

1. Given that $y = \operatorname{arcsec} 2x$, show that $y = \frac{1}{x\sqrt{4x^2-1}}$

2. Given that
$$y = \arctan\left(\frac{1-x}{1+x}\right)$$
, find $\frac{dy}{dx}$