3.1) Sums of natural numbers

Your turn

Evaluate these summations by writing out the elements:

$$
\begin{aligned}
& \sum_{r=1}^{10}(3 r-2) \\
& \sum_{r=1}^{5}(2-3 r)
\end{aligned}
$$

Evaluate these summations by writing out the elements:

$$
\sum_{r=1}^{10}(2 r-3)
$$

$$
-1+1+3+5+7+9+11+13+15
$$

$$
+17=80
$$

Your turn

Evaluate these summations by writing out the elements:

$$
\begin{aligned}
& \sum_{r=1}^{6} r^{4} \\
& \sum_{r=2}^{7}\left(r^{3}\right)
\end{aligned}
$$

Evaluate these summations by writing out the elements:

$$
\begin{gathered}
\sum_{r=3}^{8} r^{2} \\
3^{2}+4^{2}+5^{2}+6^{2}+7^{2}+8^{2}=199
\end{gathered}
$$

Evaluate:

$$
\begin{aligned}
& \sum_{r=1}^{100} r \\
& \sum_{r=20}^{50} r
\end{aligned}
$$

Evaluate:
$\sum_{r=21}^{50} r$

1065

Worked example

Your turn

Show that
$\sum_{r=5}^{3 N-1} r=\frac{9}{2} N^{2}-\frac{3}{2} N-10$
(for $N \geq 2$)

Show that
$\sum_{(\text {for } N \geq 3)}^{2 N-1} r=2 N^{2}-N-10$
Shown

Worked example

Evaluate:

$$
\sum_{r=1}^{100}(3 r-2)
$$

$$
\sum_{r=1}^{50}(2-3 r)
$$

Your turn

Evaluate

$$
\sum_{r=1}^{100}(2 r-3)
$$

9800

Show that:

$$
\sum_{r=1}^{n}(5 r-3)=\frac{1}{2} n(2 n+5)
$$

Hence evaluate

$$
\sum_{r=50}^{100}(5 r-3)
$$

Show that:

$$
\sum_{r=1}^{n}(7 r-4)=\frac{1}{2} n(7 n-1)
$$

Hence evaluate

$$
\sum_{r=20}^{50}(7 r-4)
$$

Shown
7471

Find the smallest value of k for which

$$
\sum_{r=1}^{k}(6 r-2)>310
$$

Find the smallest value of k for which

$$
\begin{gathered}
\sum_{r=1}^{k}(4 r-5)>4850 \\
k=51
\end{gathered}
$$

Given that

$$
\sum_{r=1}^{n} f(r)=3 n^{2}+4 n
$$

deduce an expression for $f(r)$ in terms of r

Given that

$$
\sum_{r=1}^{n} f(r)=2 n^{2}+5 n
$$

deduce an expression for $f(r)$ in terms of r

$$
f(r)=4 r+3
$$

Worked example

Your turn

$f(r)=a r+b$, where a and b are rational constants.
Given that

$$
\begin{aligned}
& \sum_{r=1}^{8} f(r)=152 \\
& \text { and } \\
& \sum_{r=1}^{12} f(r)=324
\end{aligned}
$$

find an expression for $f(r)$
$f(r)=a r+b$, where a and b are rational constants.
Given that

$$
\begin{aligned}
& \sum_{r=1}^{4} f(r)=36 \\
& \text { and } \\
& \sum_{r=1}^{6} f(r)=78
\end{aligned}
$$

find an expression for $f(r)$

$$
f(r)=4 r-1
$$

