3.1) Improper integrals

Your turn

Find the value of the improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{3}} d x
$$

Find the value of the improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x
$$

Your turn

Find the value of the improper integral

$$
\int_{2}^{\infty} x^{-\frac{5}{2}} d x
$$

Find the value of the improper integral

$$
\int_{2}^{\infty} x^{-\frac{3}{2}} d x
$$

$\sqrt{2}$

Find the value of the improper integral

$$
\int_{0}^{\infty} e^{-2 x} d x
$$

Find the value of the improper integral

$$
\begin{gathered}
\int_{0}^{\infty} e^{-3 x} d x \\
\frac{1}{3}
\end{gathered}
$$

Your turn

Show that the integral does not converge:

$$
\int_{0}^{1} \frac{1}{x^{3}} d x
$$

Show that the integral does not converge:

$$
\int_{0}^{1} \frac{1}{x^{2}} d x
$$

Shown

Your turn

Show that the integral does not converge:

$$
\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} d x
$$

Show that the integral does not converge:

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x
$$

Shown

Your turn

Show that the integral converges and find its value:

$$
\int_{-\infty}^{\infty} x^{2} e^{-x^{3}} d x
$$

Show that the integral converges and find its value:

$$
\int_{-\infty}^{\infty} x e^{-x^{2}} d x
$$

Your turn

Evaluate the integral:

$$
\int_{0}^{2} \frac{6 x}{\sqrt[3]{4-x^{2}}} d x
$$

Evaluate the integral:

$$
\int_{0}^{2} \frac{x}{\sqrt{4-x^{2}}} d x
$$

Show that the integral is divergent:

$$
\int_{0}^{\frac{\pi}{2}} \tan x d x
$$

Show that the integral is divergent:

$$
\int_{0}^{\pi} \sec ^{2} x d x
$$

Shown

Find the exact value of

$$
\int_{0}^{\infty} \frac{1}{3 x^{2}+4 x+1} d x
$$

Find the exact value of

$$
\int_{0}^{\infty} \frac{1}{2 x^{2}+3 x+1} d x
$$

$$
\ln 2
$$

