3A Improper Integrals

1. Calculate the area indicated in the diagram

- 2. Evaluate the integral below, or show that it is not convergent.
- a)

$$\int_{1}^{\infty} \frac{1}{x^2} \ dx$$

b)

$$\int_{1}^{\infty} \frac{1}{x} dx$$

$$\int_0^1 \frac{1}{x^2} \ dx$$

$$\int_0^2 \frac{x}{\sqrt{4 - x^2}} \ dx$$

$$\int_{-\infty}^{\infty} f(x) \ dx = \int_{-\infty}^{c} f(x) \ dx + \int_{c}^{\infty} f(x) \ dx$$

- 3
- a) Find $\int xe^{-x^2} dx$

b) Hence, show that $\int_{-\infty}^{\infty} xe^{-x^2} dx$ converges, and find its value

A final thought on positive and negative areas and the difference between 'find the integral', and 'find the area'

3B Mean Value of a Function

1. Find the mean value of $f(x) = \frac{4}{\sqrt{2+3x}}$ in the interval [2,6].

- 2. Given that $f(x)=\frac{4}{1+e^x}$ a) Show that the mean value of f(x) on the interval $[ln2,\ ln6]$ is

$$\frac{4ln\frac{9}{7}}{ln3}$$

b)	Use your answer to part a) to find the mean value of $f(x) + 4$ over the interval $[ln2, ln6]$
c)	Use geometric considerations to write down the mean value of $y=-f(x)$ over the interval $[ln2,ln6]$
In Gene	eral:
Vertical	Transformations:
Horizor	ntal Transformations:

3C Differentiating Inverse Trig Functions

1. Show that
$$\frac{d}{dx}(arcsinx) = \frac{1}{\sqrt{1-x^2}}$$

$$2. \quad \frac{d}{dx}(arccosx) = -\frac{1}{\sqrt{1-x^2}}$$

3. Find $\frac{d}{dx}(arctanx)$

- 4. Given $y = arcsinx^2$, find $\frac{dy}{dx}$ a) Using implicit differentiation

5. Given $y = arctan\left(\frac{1-x}{1+x}\right)$, find $\frac{dy}{dx}$

6. Show that

$$sin(arccosx) = \sqrt{1 - x^2}$$

3D Integrating with Trig Substitutions

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx$$

2. Find the integral:

$$\int \frac{1}{a^2 + x^2} \, dx$$

A reminder of the formula book

$$\frac{1}{\sqrt{a^2 - x^2}} \qquad \qquad \arcsin\left(\frac{x}{a}\right) \quad (|x| < a)$$

$$\frac{1}{a^2 + x^2} \qquad \qquad \frac{1}{a} \arctan\left(\frac{x}{a}\right)$$

3. Find

$$\int \frac{4}{5+x^2} \ dx$$

4. Find

$$\int \frac{1}{25 + 9x^2} \, dx$$

5. Evaluate the following, leaving your answer in terms of π .

$$\int_{-\frac{\sqrt{3}}{4}}^{\frac{\sqrt{3}}{4}} \frac{1}{\sqrt{3 - 4x^2}} \, dx$$

6. Find

$$\int \frac{x+4}{\sqrt{1-4x^2}} \, dx$$

3E Integrating with Partial Fractions

1. Prove that:

$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} ln \left| \frac{a+x}{a-x} \right| + c$$

2. Show that:

$$\int \frac{1+x}{x^3+9x} dx = Aln\left(\frac{x^2}{x^2+9}\right) + Barctan\left(\frac{x}{3}\right) + c$$

where \boldsymbol{A} and \boldsymbol{B} are constants to be found.

- 3.
- a) Express the following as partial fractions

$$\frac{x^4 + x}{x^4 + 5x^2 + 6}$$

b) Hence, find:

$$\int \frac{x^4 + x}{x^4 + 5x^2 + 6} \ dx$$