3) Series

3.1) Sums of natural numbers

3.2) Sums of squares and cubes

3.1) Sums of natural numbers

Chapter CONTENTS

Worked example	Your turn
Evaluate these summations by writing out the elements: $\sum_{r=1}^{10} (3r - 2)$	Evaluate these summations by writing out the elements: $\sum_{r=1}^{10} (2r - 3)$
$\sum_{r=1}^{5} (2-3r)$	-1 + 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 80

Worked example	Your turn
Evaluate these summations by writing out the elements: $\sum_{r=1}^{6} r^4$	Evaluate these summations by writing out the elements: $\sum_{r=3}^{8} r^{2}$ $3^{2} + 4^{2} + 5^{2} + 6^{2} + 7^{2} + 8^{2} = 199$
$\sum_{r=2}^{7} (r^3)$	

Worked example	Your turn
Evaluate: $\sum_{r=1}^{100} r$	Evaluate: $\sum_{r=21}^{50} r$ 1065
$\sum_{r=20}^{50} r$	

Worked example	Your turn
Show that $\sum_{r=5}^{3N-1} r = \frac{9}{2}N^2 - \frac{3}{2}N - 10$	Show that $\sum_{r=5}^{2N-1} r = 2N^2 - N - 10$
(for $N \ge 2$)	$(for N \ge 3)$
	Shown

Worked example	Your turn
Evaluate: $\sum_{r=1}^{100} (3r-2)$	Evaluate $\sum_{r=1}^{100} (2r - 3)$ 9800
$\sum_{r=1}^{50} (2-3r)$	

Worked example	Your turn
Show that: $\sum_{n=1}^{n} (5r - 3) = \frac{1}{2}n(2n + 5)$	Show that: $\sum_{n=1}^{n} (7r - 4) = \frac{1}{2}n(7n - 1)$
Hence evaluate $\sum_{r=50}^{100} (5r-3)$	Hence evaluate $\sum_{r=20}^{50} (7r-4)$ Shown 7471

Worked example	Your turn
Find the smallest value of k for which $\sum_{r=1}^{k} (6r-2) > 310$	Find the smallest value of k for which $\sum_{r=1}^{k} (4r - 5) > 4850$ $k = 51$

Worked example	Your turn
Given that n	Given that n
$\sum_{r=1} f(r) = 3n^2 + 4n$	$\sum_{r=1} f(r) = 2n^2 + 5n$
deduce an expression for $f(r)$ in terms of r	deduce an expression for $f(r)$ in terms of r
	f(r) = 4r + 3

Worked example	Your turn
f(r) = ar + b, where a and b are rational constants.	f(r) = ar + b, where a and b are rational constants.
Given that	Given that
$\sum_{r=1}^{n} f(r) = 152$	$\sum_{r=1}^{6} f(r) = 36$
and	and
$\sum_{r=1}^{12} f(r) = 324$	$\sum_{r=1}^{6} f(r) = 78$
find an expression for $f(r)$	find an expression for $f(r)$ f(r) = 4r - 1

3.2) Sums of squares and cubes

Chapter CONTENTS

Worked example	Your turn
Evaluate: $\sum_{r=1}^{100} r^2$	Evaluate: $\sum_{r=21}^{100} r^2$ 335480
$\sum_{r=20}^{50} r^2$	

Worked example	Your turn
Evaluate: $\sum_{r=1}^{100} r^3$	Evaluate: $\sum_{r=21}^{100} r^3$ 25458400
$\sum_{r=20}^{50} r^3$	

Worked example	Your turn
Show that $\sum_{r=2n+1}^{4n} r^2 = \frac{1}{3}n(4n+1)(14n+1)$	Show that $\sum_{r=n+1}^{2n} r^2 = \frac{1}{6}n(2n+1)(7n+1)$
	Shown

Worked example	Your turn
Show that $\sum_{r=1}^{n} (r+2)(r+3) = \frac{1}{3}n(n^2 + 9n + 26)$	Show that $\sum_{r=1}^{n} (r+2)(r-1) = \frac{1}{3}n(n+4)(n-1)$
	Shown

Worked exampleYour turnShow that
$$\sum_{r=1}^{n} r(r+1)(r+5) = \frac{1}{4}n(n+1)(n+2)(n+7)$$
Show thatand hence evaluate
$$\sum_{r=10}^{n} r(r+1)(r+5)$$
$$\sum_{r=10}^{n} r(r+3)(2r-1) = \frac{1}{6}n(n+1)(3n^2+13n-4)$$
and hence evaluate
$$\sum_{r=11}^{40} r(r+3)(2r-1)$$
Shown1445230

Worked example	Your turn
Find the value of <i>n</i> that satisfies $\sum_{r=1}^{n} (r^2 - r) = \sum_{r=1}^{n} 5$	Find the value of n that satisfies $\sum_{r=1}^{n} (r^3 - r^2) = \sum_{r=1}^{n} 7r$
	n = 4