2E Loci on Argand Diagrams

$$
\left|z-z_{1}\right|=r
$$

1. Given that $|z-4|=5$
a) Sketch the locus of z on an Argand diagram

b) Find the values of z that satisfy:
i) $\quad|z-4|=5$ and $\operatorname{Im}(z)=0$
ii) $\quad|z-4|=5$ and $\operatorname{Re}(z)=0$

2. If $|z-5-3 i|=3$
a) Sketch the locus of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ which is represented by z on an Argand diagram

b) Find the maximum value of argz in the interval $(-\pi, \pi)$

c) Use an algebraic method to find a Cartesian equation of the locus of z
3. Given that the complex number $\quad z=x+i y$ satisfies the equation:

$$
|z-12-5 i|=3
$$

Find the minimum and maximum values of $|z|$

Notes on Loci for $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
4. Sketch the locus of $P(x, y)$ which is represented by z on an Argand diagram, if:
a)

$$
|z|=|z-6 i|
$$

b) Show that the locus is $y=3$ using an algebraic method
5.
a) Use an algebraic method to find the Cartesian equation of the locus of z if:

$$
|z-3|=|z+i|
$$

c) Represent the locus of z on a cartesian set of axes

Notes on Loci for $\operatorname{argz}=\theta$

6. If

$$
\arg Z=\frac{\pi}{4}
$$

Sketch the locus of $P(x, y)$ which is represented by z on an Argand diagram. Then find the Cartesian equation of this locus algebraically.

7. If

$$
\arg (z-2)=\frac{\pi}{3}
$$

Sketch the locus of $P(x, y)$ which is represented by z on an Argand diagram. Then find the Cartesian equation of this locus algebraically.
8. If

$$
\arg (z+3+2 i)=\frac{3 \pi}{4}
$$

Sketch the locus of z on an Argand diagram and use an algebraic method to find the equation of the line.

