2.4) Loci in the Argand diagram

Your turn

Sketch the locus of points represented by

$$
|z|=3
$$

$$
|z|=4
$$

Your turn

Sketch the locus of points represented by $|z+3-5 i|=2$ and find its Cartesian equation

Sketch the locus of points represented by

$$
|z-3+5 i|=4
$$

and find its Cartesian equation

Draw the locus of points that satisfy:

$$
|z-5-3 i|=6
$$

and find its Cartesian equation

$$
\begin{aligned}
& \text { Circle centre }(5,3) \text { radius } 6 \\
& (x-5)^{2}+(y-3)^{2}=36
\end{aligned}
$$

Your turn

Sketch the locus of points represented by

$$
|3-z|=5
$$

and find its Cartesian equation

Sketch the locus of points represented by $|2 i-z|=4$
and find its Cartesian equation

Sketch the locus of points represented by $|2-3 i-z|=2$
and find its Cartesian equation

Draw the locus of points that satisfy:

$$
|3-2 i-z|=3
$$

and find its Cartesian equation

$$
\begin{aligned}
& \text { Circle centre }(3,-2) \text { radius } 3 \\
& \quad(x-2)^{2}+(y+2)^{2}=9
\end{aligned}
$$

Your turn

A complex number z is represented by the point P. Given that $|z-3+5 i|=2$
(a) Sketch the locus of P
(b) Find the Cartesian equation of the locus.
(c) Find the maximum value of $\arg z$ in the interval $(-\pi, \pi)$
(d) Find the minimum and maximum values of $|z|$

A complex number z is represented by the point P. Given that $|z-5-3 i|=3$
(a) Sketch the locus of P
(b) Find the Cartesian equation of the locus.
(c) Find the maximum value of $\arg z$ in the interval $(-\pi, \pi)$
(d) Find the minimum and maximum values of $|z|$
(a) Circle centre $(5,3)$ radius 3
(b) $(x-5)^{2}+(y-3)^{2}=36$
(c) $1.08(3 \mathrm{sf})$
(d) $\operatorname{Max}|z|=\sqrt{34}+3$

Min $|z|=\sqrt{34}-3$

Your turn

Sketch the locus of points represented by
$|z|=|z+4 i|$ and find its Cartesian equation

Sketch the locus of points represented by

$$
|z|=|z-5|
$$

and find its Cartesian equation

Sketch the locus of points represented by

$$
|z|=|z-6 i|
$$

and find its Cartesian equation

$$
\begin{aligned}
& \text { Perpendicular bisector of }(0,0) \text { and }(0,6) \\
& \qquad y=3
\end{aligned}
$$

Your turn

Sketch the locus of points represented by $|z-3 i|=|z+1|$ and find its Cartesian equation

Sketch the locus of points represented by $|z-3|=|z+i|$
and find its Cartesian equation

Perpendicular bisector of $(3,0)$ and $(0,-1)$

$$
y=-3 x+4
$$

Find the Cartesian equation of the locus of z if $|z-3 i|=|z+1|$ and sketch the locus of z on an Argand diagram. Hence, find the least possible value of $|z|$.

Find the Cartesian equation of the locus of z if $|z-3|=|z+i|$, and sketch the locus of z on an Argand diagram.
Hence, find the least possible value of $|z|$.

$$
\frac{2 \sqrt{10}}{5}
$$

Given that the complex number z satisfies the equation $|z-8+6 i|=5$, find the minimum value of $|z|$ and the maximum.

Given that the complex number z satisfies the equation $|z-12-5 i|=3$, find the minimum value of $|z|$ and the maximum.

Your turn

Sketch the locus of points represented by

$$
\arg (z)=\frac{\pi}{4}
$$

and find its Cartesian equation
Sketch the locus of points represented by

$$
\arg (z)=\frac{\pi}{6}
$$

and find its Cartesian equation

$$
\begin{aligned}
& \text { Half-line from origin }(0,0) \\
& y=\frac{1}{\sqrt{3}} x, \quad x>0, y>0
\end{aligned}
$$

Sketch the locus of points represented by

$$
\arg (z)=\frac{\pi}{3}
$$

and find its Cartesian equation

Your turn

Sketch the locus of points represented by

$$
\arg (z-2+3 i)=\frac{\pi}{4}
$$

and find its Cartesian equation

Sketch the locus of points represented by

$$
\arg (z+3+2 i)=\frac{3 \pi}{4}
$$

and find its Cartesian equation

$$
\begin{gathered}
\text { Half-line from }(-3,-2) \\
y=-x-5, \quad x<-3, y>-2
\end{gathered}
$$

Find the complex number z which satisfies both $|z+3-2 i|=50$ and $\arg (z+3-2 i)=\frac{\pi}{4}$

Find the complex number z which satisfies both $|z+3+2 i|=10$ and

$$
\arg (z+3+2 i)=\frac{3 \pi}{4}
$$

$$
z=(-3-5 \sqrt{2})+i(-2+5 \sqrt{2})
$$

If the complex number z satisfies both $\arg z=\frac{\pi}{4}$ and $\arg (z-3)=\frac{\pi}{2}$,
(a) Find the value of z
(b) Hence, find $\arg (z-6)$

If the complex number z satisfies both $\arg z=\frac{\pi}{3}$ and $\arg (z-4)=\frac{\pi}{2}$,
(a) Find the value of z
(b) Hence, find $\arg (z-8)$
(a) $z=4+4 \sqrt{3} i$
(b) $\frac{2 \pi}{3}$

Your turn

Given $|z+4-8 i|=3$, show that the maximum value of $\arg (z+12-5 i)$ in the interval $(-\pi, \pi)$ is $2 \arcsin \left(\frac{3}{\sqrt{73}}\right)$ maximum value of $\arg (z+15-2 i)$ in the interval $(-\pi, \pi)$ is $2 \arcsin \left(\frac{2}{\sqrt{53}}\right)$

