2.4) Loci in the Argand diagram

Worked example	Your turn
Sketch the locus of points represented by $ z = 3$	Sketch the locus of points represented by $ z = 5$
	Circle centre $(0, 0)$ radius 5 Cartesian equation: $x^2 + y^2 = 25$
z = 4	

Worked example	Your turn
Sketch the locus of points represented by z + 3 - 5i = 2 and find its Cartesian equation	Draw the locus of points that satisfy: z - 5 - 3i = 6 and find its Cartesian equation
	Circle centre (5, 3) radius 6 $(x - 5)^2 + (y - 3)^2 = 36$
Sketch the locus of points represented by $ z - 3 + 5i = 4$ and find its Cartesian equation	

Worked example	Your turn
Sketch the locus of points represented by $ 3 - z = 5$	Draw the locus of points that satisfy: 3 - 2i - z = 3
and find its Cartesian equation	and find its Cartesian equation
	Circle centre $(3, -2)$ radius 3 $(x - 2)^2 + (y + 2)^2 = 9$
Sketch the locus of points represented by $ 2i - z = 4$ and find its Cartesian equation	
Sketch the locus of points represented by 2 - 3i - z = 2 and find its Cartesian equation	

Worked example	Your turn
A complex number <i>z</i> is represented by the point <i>P</i> . Given that $ z - 3 + 5i = 2$ (a) Sketch the locus of <i>P</i> (b) Find the Cartesian equation of the locus. (c) Find the maximum value of arg <i>z</i> in the interval $(-\pi, \pi)$ (d) Find the minimum and maximum values of $ z $	A complex number <i>z</i> is represented by the point <i>P</i> . Given that $ z - 5 - 3i = 3$ (a) Sketch the locus of <i>P</i> (b) Find the Cartesian equation of the locus. (c) Find the maximum value of arg <i>z</i> in the interval $(-\pi, \pi)$ (d) Find the minimum and maximum values of $ z $
	(a) Circle centre (5, 3) radius 3 (b) $(x - 5)^2 + (y - 3)^2 = 36$ (c) 1.08 (3 sf) (d) Max $ z = \sqrt{34} + 3$ Min $ z = \sqrt{34} - 3$

Worked example	
Sketch the locus of points represented by $ z = z + 4i $	Sketch the lo
and find its Cartesian equation	and find its C
	Perpendic
Sketch the locus of points represented by $ z = z - 5 $	
and find its Cartesian equation	

Your turn he locus of points represented by |z| = |z - 6i|

and find its Cartesian equation

Perpendicular bisector of (0, 0) and (0, 6)y = 3

Worked example	Your turn
Sketch the locus of points represented by $ z - 3i = z + 1 $ and find its Cartesian equation	Sketch the locus of points represented by $ z - 3 = z + i $ and find its Cartesian equation
	Perpendicular bisector of $(3, 0)$ and $(0, -1)$ y = -3x + 4

Worked example	Your turn
Find the Cartesian equation of the locus of z if z - 3i = z + 1 and sketch the locus of z on an Argand diagram. Hence, find the least possible value of $ z $.	Find the Cartesian equation of the locus of z if $ z - 3 = z + i $, and sketch the locus of z on an Argand diagram. Hence, find the least possible value of $ z $.
	$\frac{2\sqrt{10}}{5}$

Worked example	Your turn
Given that the complex number z satisfies the equation $ z - 8 + 6i = 5$, find the minimum value of $ z $ and the maximum.	Given that the complex number z satisfies the equation $ z - 12 - 5i = 3$, find the minimum value of $ z $ and the maximum.
	Minimum = 10 Maximum = 16

Worked example Your turn Sketch the locus of points represented by Sketch the locus of points represented by $\arg(z) = \frac{\pi}{\Lambda}$ $\arg(z) = \frac{\pi}{2}$ and find its Cartesian equation and find its Cartesian equation Half-line from origin (0, 0) $y = \frac{1}{\sqrt{3}}x, \qquad x > 0, y > 0$ Sketch the locus of points represented by $\arg(z) = \frac{\pi}{3}$ and find its Cartesian equation

Worked example	Your turn
Sketch the locus of points represented by $\arg(z - 2 + 3i) = \frac{\pi}{4}$	Sketch the locus of points represented by $\arg(z + 3 + 2i) = \frac{3\pi}{4}$
and find its Cartesian equation	and find its Cartesian equation Half-line from $(-3, -2)$ y = -x - 5, $x < -3$, $y > -2$

Worked example	Your turn
Find the complex number <i>z</i> which satisfies both $ z + 3 - 2i = 50$ and $arg(z + 3 - 2i) = \frac{\pi}{4}$	Find the complex number z which satisfies both $ z + 3 + 2i = 10$ and $\arg(z + 3 + 2i) = \frac{3\pi}{4}$
	$z = (-3 - 5\sqrt{2}) + i(-2 + 5\sqrt{2})$

Worked example	Your turn
If the complex number z satisfies both arg $z = \frac{\pi}{4}$ and $\arg(z - 3) = \frac{\pi}{2}$, (a) Find the value of z (b) Hence, find $\arg(z - 6)$	If the complex number z satisfies both $\arg z = \frac{\pi}{3}$ and $\arg(z - 4) = \frac{\pi}{2}$, (a) Find the value of z (b) Hence, find $\arg(z - 8)$ (a) $z = 4 + 4\sqrt{3}i$ (b) $\frac{2\pi}{3}$

Worked example	Your turn
Given $ z + 4 - 8i = 3$, show that the maximum value of $\arg(z + 12 - 5i)$ in the interval $(-\pi, \pi)$ is $2 \arcsin\left(\frac{3}{\sqrt{73}}\right)$	Given $ z + 8 - 4i = 2$, show that the maximum value of $\arg(z + 15 - 2i)$ in the interval $(-\pi, \pi)$ is $2 \arcsin\left(\frac{2}{\sqrt{53}}\right)$
	Shown