2D Composite Maclaurin Series

Formula Book Formulae:

Maclaurin's and Taylor's Series

$$
\begin{aligned}
& \mathrm{f}(x)=\mathrm{f}(0)+x \mathrm{f}^{\prime}(0)+\frac{x^{2}}{2!} \mathrm{f}^{\prime \prime}(0)+\ldots+\frac{x^{r}}{r!} \mathrm{f}^{(r)}(0)+\ldots \\
& \mathrm{e}^{x}=\exp (x)=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{r}}{r!}+\ldots \quad \text { for all } x \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{r+1} \frac{x^{r}}{r}+\ldots \quad(-1<x \leqslant 1) \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+(-1)^{r} \frac{x^{2 r+1}}{(2 r+1)!}+\ldots \quad \text { for all } x \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+(-1)^{r} \frac{x^{2 r}}{(2 r)!}+\ldots \quad \text { for all } x \\
& \arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots+(-1)^{r} \frac{x^{2 r+1}}{2 r+1}+\ldots \quad(-1 \leqslant x \leqslant 1)
\end{aligned}
$$

1. Write down the first 4 non-zero terms in the series expansion of $\cos \left(2 x^{2}\right)$
2. Find the first 4 non-zero terms in the series expansion of:

$$
\ln \left\{\frac{\sqrt{1+2 x}}{1-3 x}\right\}
$$

3. Given that terms in $x^{n}, n>4$ can be ignored, show, using the series expansions of e^{x} and $\sin x$, that:

$$
e^{\sin x} \approx 1+x+\frac{x^{2}}{2}-\frac{x^{4}}{8}
$$

