2D Composite Maclaurin Series

Formula Book Formulae:

Maclaurin's and Taylor's Series $f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots + \frac{x^r}{r!} f^{(r)}(0) + \dots$ $e^x = \exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^r}{r!} + \dots \quad \text{for all } x$ $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{r+1} \frac{x^r}{r} + \dots \quad (-1 < x \le 1)$ $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots \quad \text{for all } x$ $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots \quad \text{for all } x$ $\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^r \frac{x^{2r+1}}{2r+1} + \dots \quad (-1 \le x \le 1)$

1. Write down the first 4 non-zero terms in the series expansion of $cos(2x^2)$

2. Find the first 4 non-zero terms in the series expansion of:

$$ln\left\{\frac{\sqrt{1+2x}}{1-3x}\right\}$$

3. Given that terms in xⁿ, n > 4 can be ignored, show, using the series expansions of e^x and sinx, that:

$$e^{sinx} \approx 1 + x + \frac{x^2}{2} - \frac{x^4}{8}$$