

We previously said that we can only guarantee the curve is the same, i.e. the expansion is valid, 'around' x=0. For e^x and $\cos x$ we got lucky in that the curve turned out to be the same everywhere, for all x.

But as per the animation above, we can see that away from x=0, the curve actually gets worse with more terms in the expansion!

Looking at the graph on the left, for what range of x is this expansion valid for?

$$-1 \le x < 1$$

Ex 2C

Composite Functions

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{r}}{r!} + \dots \qquad \text{(valid for all } x\text{)}$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{r-1} \frac{x^{r}}{r} + \dots \qquad -1 < x \le 1$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + \frac{(-1)^{r} x^{2r+1}}{(2r+1)!} + \dots \qquad \text{(valid for all } x\text{)}$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + \frac{(-1)^{r} x^{2r}}{2r!} + \dots \qquad \text{(valid for all } x\text{)}$$

$$\arctan x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \dots + \frac{(-1)^{r} x^{2r+1}}{2r+1} - \dots \qquad -1 \le x \le 1$$

We can also apply these when the input to the function is different.

$$cos(2x^2) =$$

You might need some manipulation first.

Find the first three non-zero terms of the series expansion of $\ln\left(\frac{\sqrt{1+2x}}{1-3x}\right)$, and state the interval in x for which the expansion is valid.

Standard Expansions (given in formula booklet)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{r-1} \frac{x^r}{r} + \dots \qquad -1 < x \le 1$$

Given that terms in x^n , n > 4 may be neglected, use the series for e^x and $\sin x$ to show that $e^{\sin x} \approx 1 + x + \frac{x^2}{2}$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{2!} + \frac{x^4}{4!} + \dots + \frac{x^r}{r!} + \dots$$
 (valid for all x)

Standard Expansions (given in formula booklet)
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{r}}{r!} + \dots$$
 (valid for all x)
$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + \frac{(-1)^{r} x^{2r+1}}{(2r+1)!} + \dots$$
 (valid for all x)