2.4) Series expansions of compound functions

Your turn

Find the Maclaurin series for $e^{4 x}$ up to and including the term in x^{4}

Find the Maclaurin series for $e^{3 x}$ up to and including the term in x^{4}

$$
e^{3 x}=1+3 x+\frac{9 x^{2}}{2}+\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}+\cdots
$$

Find the Maclaurin series for $\ln (1+3 x)$ up to and including the term in x^{4}

Find the Maclaurin series for $\ln (1+2 x)$ up to and including the term in x^{4}

$$
\ln (1+2 x)=2 x-2 x^{2}+\frac{8 x^{3}}{3}-4 x^{4}+\cdots
$$

Your turn

Write down the first four non-zero terms in the series expansion, in ascending powers of x, of

$$
\sin \left(4 x^{3}\right)
$$

Write down the first four non-zero terms in the series expansion, in ascending powers of x, of

$$
\begin{gathered}
\cos \left(2 x^{2}\right) \\
1-3 x^{4}+\frac{2}{3} x^{8}-\frac{4}{45} x^{12}+\cdots
\end{gathered}
$$

Find the first three non-zero terms of the series expansion of $\ln \left(\frac{\sqrt{1+3 x}}{1-2 x}\right)$, and state the interval in x for which the expansion is valid.

Find the first three non-zero terms of the series expansion of $\ln \left(\frac{\sqrt{1+2 x}}{1-3 x}\right)$, and state the interval in x for which the expansion is valid.

$$
\begin{gathered}
4 x+\frac{7}{2} x^{2}+\frac{31}{3} x^{3}+\cdots \\
\text { Valid for }-\frac{1}{3} \leq x<\frac{1}{3}
\end{gathered}
$$

Your turn

Find the first three terms in the Maclaurin series expansion of $e^{\cos x}$

Find the first three terms in the Maclaurin series expansion of $e^{\sin x}$

$$
1+x+\frac{x^{2}}{2}
$$

Your turn

Find the series expansions, up to and including the term in x^{4}, of:

$$
\ln \left(1+2 x-3 x^{2}\right)
$$

State the range of values of x for which the expansion is valid

Find the series expansions, up to and including the term in x^{4}, of:

$$
\ln \left(1+x-2 x^{2}\right)
$$

State the range of values of x for which the expansion is valid

$$
\begin{gathered}
x-\frac{5 x^{2}}{2}+\frac{7 x^{3}}{3}-\frac{17 x^{4}}{4}+\cdots \\
-\frac{1}{2}<x \leq \frac{1}{2}
\end{gathered}
$$

Your turn

Find the series expansions, up to and including the term in x^{4}, of:

$$
\ln \left(16+8 x+x^{2}\right)
$$

State the range of values of x for which the expansion is valid

Find the series expansions, up to and including the term in x^{4}, of:

$$
\ln \left(9+6 x+x^{2}\right)
$$

State the range of values of x for which the expansion is valid

$$
\begin{gathered}
2 \ln 3+\frac{2 x}{3}-\frac{x^{2}}{9}+\frac{2 x^{3}}{81}-\frac{x^{4}}{162}+\cdots \\
-3<x \leq 3
\end{gathered}
$$

Find the series expansion, up to and including the term in x^{4}, of:

$$
\ln \left(16+8 x+x^{2}\right)
$$

State the range of values of x for which the expansion is valid

Find the series expansion, up to and including the term in x^{4}, of:

$$
\ln \left(9+6 x+x^{2}\right)
$$

State the range of values of x for which the expansion is valid

$$
\begin{gathered}
2 \ln 3+\frac{2 x}{3}-\frac{x^{2}}{9}+\frac{2 x^{3}}{81}-\frac{x^{4}}{162}+\cdots \\
-3<x \leq 3
\end{gathered}
$$

Your turn

Using the first two terms, $x-\frac{x^{3}}{3}$, in the expansion of $\arctan x$, find the first four terms of $e^{\arctan x}$
Deduce the first four terms in the series expansion of $e^{-\arctan x}$

Using the first two terms, $x+\frac{x^{3}}{3}$, in the expansion of $\tan x$, find the first four terms of $e^{\tan x}$
Deduce the first four terms in the series expansion of $e^{-\tan x}$

$$
\begin{aligned}
e^{\tan x} & =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\cdots \\
e^{-\tan x} & =1-x+\frac{x^{2}}{2}-\frac{x^{3}}{2}+\cdots
\end{aligned}
$$

