2.4) Series expansions of compound functions

Worked example	Your turn
Find the Maclaurin series for e^{4x} up to and including the term in x^4	Find the Maclaurin series for e^{3x} up to and including the term in x^4
	$e^{3x} = 1 + 3x + \frac{9x^2}{2} + \frac{9x^3}{2} + \frac{27x^4}{8} + \cdots$

Worked example	Your turn
Find the Maclaurin series for $\ln(1 + 3x)$ up to and including the term in x^4	Find the Maclaurin series for $\ln(1 + 2x)$ up to and including the term in x^4
	$\ln(1+2x) = 2x - 2x^2 + \frac{8x^3}{3} - 4x^4 + \cdots$

Worked example	Your turn
Write down the first four non-zero terms in the series expansion, in ascending powers of x, of $sin(4x^3)$	Write down the first four non-zero terms in the series expansion, in ascending powers of x, of $\cos(2x^2)$ $1 - 3x^4 + \frac{2}{3}x^8 - \frac{4}{45}x^{12} + \cdots$

Worked example	Your turn
Find the first three non-zero terms of the	Find the first three non-zero terms of the
series expansion of $\ln\left(\frac{\sqrt{1+3x}}{1-2x}\right)$, and state the	series expansion of $\ln\left(\frac{\sqrt{1+2x}}{1-3x}\right)$, and state the
interval in x for which the expansion is valid.	interval in x for which the expansion is valid.
	7 21

$$4x + \frac{7}{2}x^2 + \frac{31}{3}x^3 + \cdots$$

Valid for $-\frac{1}{3} \le x < \frac{1}{3}$

Worked example	Your turn
Find the first three terms in the Maclaurin series expansion of $e^{\cos x}$	Find the first three terms in the Maclaurin series expansion of $e^{\sin x}$
	$1 + x + \frac{x^2}{2}$

Worked example	Your turn
Find the series expansions, up to and including the term in x^4 , of: $ln(1 + 2x - 3x^2)$ State the range of values of x for which the expansion is valid	Find the series expansions, up to and including the term in x^4 , of: $ln(1 + x - 2x^2)$ State the range of values of x for which the expansion is valid
	$x - \frac{5x^2}{2} + \frac{7x^3}{3} - \frac{17x^4}{4} + \dots -\frac{1}{2} < x \le \frac{1}{2}$

Worked example	Your turn
Find the series expansions, up to and including the term in x^4 , of: $ln(16 + 8x + x^2)$ State the range of values of x for which the expansion is valid	Find the series expansions, up to and including the term in x^4 , of: $\ln(9 + 6x + x^2)$ State the range of values of x for which the expansion is valid
	$2\ln 3 + \frac{2x}{3} - \frac{x^2}{9} + \frac{2x^3}{81} - \frac{x^4}{162} + \dots \\ -3 < x \le 3$

Worked example	Your turn
Find the series expansion, up to and including the term in x^4 , of: $ln(16 + 8x + x^2)$ State the range of values of x for which the expansion is valid	Find the series expansion, up to and including the term in x^4 , of: $\ln(9 + 6x + x^2)$ State the range of values of x for which the expansion is valid
	$2\ln 3 + \frac{2x}{3} - \frac{x^2}{9} + \frac{2x^3}{81} - \frac{x^4}{162} + \dots -3 < x \le 3$

Worked example	Your turn
Using the first two terms, $x - \frac{x^3}{3}$, in the expansion of $\arctan x$, find the first four terms of $e^{\arctan x}$ Deduce the first four terms in the series expansion of $e^{-\arctan x}$	Using the first two terms, $x + \frac{x^3}{3}$, in the expansion of $\tan x$, find the first four terms of $e^{\tan x}$ Deduce the first four terms in the series expansion of $e^{-\tan x}$ $e^{\tan x} = 1 + x + \frac{x^2}{2} + \frac{x^3}{2} + \cdots$ $e^{-\tan x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \cdots$