2.3) Modulus-argument form of complex numbers

Express $z=-1+i$ in the form $r(\cos \theta+i \sin \theta)$ where $-\pi<\theta \leq \pi$

Express $z=-1-i$ in the form $r(\cos \theta+i \sin \theta)$ where $-\pi<\theta \leq \pi$

$$
r=\sqrt{2}\left(\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right)
$$

Express $z=-\sqrt{3}+i$ in the form $r(\cos \theta+i \sin \theta)$ where $-\pi<\theta \leq \pi$

Express $z=-1-\sqrt{3} i$ in the form $r(\cos \theta+i \sin \theta)$ where $-\pi<\theta \leq \pi$

$$
r=2\left(\cos \left(-\frac{2 \pi}{3}\right)+i \sin \left(-\frac{2 \pi}{3}\right)\right)
$$

Your turn

The complex number z is such that $|\mathrm{z}|=3$ and $\arg z=\frac{\pi}{4}$. Find z in the form $a+b i$, where a and b are exact real numbers to be found.

The complex number z is such that $|z|=5$ and $\arg z=\frac{3 \pi}{4}$. Find z in the form $a+b i$, where a and b are exact real numbers to be found.

$$
a=-\frac{5 \sqrt{2}}{2}, b=\frac{5 \sqrt{2}}{2}
$$

