

Express
$$z = -1 + i$$
 in the form $r(\cos \theta + i \sin \theta)$ where $-\pi < \theta \le \pi$

Express
$$z=-1-i$$
 in the form $r(\cos\theta+i\sin\theta)$ where $-\pi<\theta\leq\pi$

$$r = \sqrt{2} \left(\cos \left(-\frac{3\pi}{4} \right) + i \sin \left(-\frac{3\pi}{4} \right) \right)$$

Express
$$z = -\sqrt{3} + i$$
 in the form $r(\cos \theta + i \sin \theta)$ where $-\pi < \theta \le \pi$

Express $z=-1-\sqrt{3} i$ in the form $r(\cos\theta+i\sin\theta)$ where $-\pi<\theta\leq\pi$

$$r = 2\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right)$$

Worked examp	ole
The complex number z is su	ch that

The complex number z is such that |z| = 5 and $\arg z = \frac{3\pi}{4}$. Find z in the form

Your turn

|z| = 3 and $\arg z = \frac{\pi}{4}$. Find z in the form a + bi, where a and b are exact real numbers to be found.

a + bi, where a and b are exact real numbers to be found. $a = -\frac{5\sqrt{2}}{b} \quad b = \frac{5\sqrt{2}}{a}$

The complex number
$$z$$
 is such that $|z| = 4$ and $\arg z = -\frac{3\pi}{4}$. Find z in the form $a + bi$, where a and b are exact real numbers to be found.

$$a = -\frac{5\sqrt{2}}{2}, b = \frac{5\sqrt{2}}{2}$$