2C Maclaurin Series

1. Given that $f(x)=e^{x}$ can be written in the form:

$$
e^{x}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{r} x^{r}
$$

And that it is valid to differentiate an infinite series term by term, show that:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{r}}{r!}
$$

Generalising:

2.

a) Express $\ln (1+x)$ as an infinite series in ascending powers of x, up to and including the term in x^{3}
b) Using this series, find approximate values for:
i) $\quad \ln (1.05)$
ii) $\quad \ln (1.25)$
iii) $\quad \ln (1.8)$
3. Find the Maclaurin expansion for $\sin x$, up to the term in x^{5}. Then use your expansion to find an approximation for $\sin 10^{\circ}$.
4. Find the Maclaurin expansion for $\cos x$, up to the term in x^{4}.
5. Proving Euler's relation:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

