2.3) Maclaurin series

Your turn

Find the Maclaurin series for $\frac{1}{1-x}$
Find the Maclaurin series for $\sqrt{1+x}$

$$
\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots
$$

Your turn

Find the Maclaurin series for $\ln (1+x)$
Find the Maclaurin series for e^{x}

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

Your turn

Find the Maclaurin series for $\cos ^{2} x$ up to and including the term in x^{4}

Find the Maclaurin series for $\sin ^{2} x$ up to and including the term in x^{4}

$$
x^{2}-\frac{x^{4}}{3}+\cdots
$$

(a) Find the Maclaurin series for $\cos x$
(b) Use the first three terms of the series to find an approximation for $\cos 30^{\circ}$
(a) Find the Maclaurin series for $\sin x$
(b) Use the first two terms of the series to find an approximation for $\sin 10^{\circ}$
(a) $\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{r} \frac{x^{2 r}}{(2 r)!}+\cdots$ (b) 0.17365 (5 dp)

