2.2) Modulus and argument

Determine the modulus and argument:
$4+3 i$
$-1+i$
$-2 i$
$-1-3 i$

Determine the modulus and argument:
$8+6 i$
Modulus $=10$
Argument $=0.644(3 \mathrm{sf})$
$1-i$
Modulus $=\sqrt{2}$
Argument $=-\frac{\pi}{4}$

$$
-2
$$

Modulus $=2$
Argument $= \pm \pi$
$-1+3 i$
Modulus $=\sqrt{10}$
Argument $=1.25(3 \mathrm{sf})$

$$
z=3-2 i
$$

$$
z=2-3 i
$$

Find:
a) z^{2}
b) $\left|z^{2}\right|$

Find:
a) z^{2}
b) $\left|z^{2}\right|$
c) $\arg \left(z^{2}\right)$
d) Show z and z^{2} on an Argand diagram
(a) $-5-12 i$
(b) 13
(c) -1.97 (3 sf)
(d) Shown
d) Show z and z^{2} on an Argand diagram

Your turn

$$
w=2+3 i
$$

$$
w=2+5 i
$$

Given that $\arg (\lambda+5 i+w)=\frac{\pi}{4}$, where λ is a real constant, find the value of λ

Your turn

The complex numbers w and z are given by $w=k-i$ and $z=3-5 k i$, where k is a real constant. Given that $\arg (w+z)=\frac{\pi}{3}$, find the exact value of k

The complex numbers w and z are given by $w=k+i$ and $z=-4+5 k i$, where k is a real constant. Given that $\arg (w+z)=\frac{2 \pi}{3}$, find the exact value of k

$$
k=\frac{21 \sqrt{3}-17}{22}
$$

Your turn

The complex numbers w and z are defined such that $\arg w=\frac{\pi}{20},|w|=3$ and $\arg z=\frac{7 \pi}{20}$.
Given that $\arg (w+z)=\frac{\pi}{4}$, find the value of $|z|$

The complex numbers w and z are defined such that $\arg w=\frac{\pi}{10},|w|=5$ and $\arg z=\frac{2 \pi}{5}$.
Given that $\arg (w+z)=\frac{\pi}{5}$, find the value of $|z|$
2.63 (3 sf)

