2.2) Modulus and argument

Worked example	Your turn
Determine the modulus and argument: $4 + 3i$	Determine the modulus and argument: 8 + 6i Modulus = 10 Argument = 0.644 (3 sf)
-1 + i	1-i Modulus = $\sqrt{2}$ Argument = $-\frac{\pi}{4}$
-2 <i>i</i>	-2 Modulus = 2 Argument = $\pm \pi$
-1 - 3i	-1 + 3i Modulus = $\sqrt{10}$ Argument = 1.25 (3 sf)

Worked example	Your turn
z = 3 - 2i Find: a) z^2	z = 2 - 3i Find: a) z^2 b) $ z^2 $ c) $\arg(z^2)$
b) z ²	d) Show z and z^2 on an Argand diagram (a) $-5 - 12i$ (b) 13 (c) -1.97 (3 sf)
c) $\arg(z^2)$	(d) Shown
d) Show z and z^2 on an Argand diagram	

Worked example	Your turn
w = 2 + 3i	w = 2 + 5i
Given that $\arg(\lambda + 5i + w) = \frac{\pi}{4}$, where λ	Given that $\arg(\lambda + 3i + w) = \frac{\pi}{4}$, where λ
is a real constant, find the value of λ	is a real constant, find the value of λ
	$\lambda = 6$

Worked example	Your turn
The complex numbers w and z are given by $w = k - i$ and $z = 3 - 5ki$, where k is a real constant. Given that $\arg(w + z) = \frac{\pi}{3}$, find the exact value of k	The complex numbers w and z are given by w = k + i and $z = -4 + 5ki$, where k is a real constant. Given that $\arg(w + z) = \frac{2\pi}{3}$, find the exact value of k

$$k = \frac{21\sqrt{3} - 17}{22}$$

Worked example	Your turn
The complex numbers w and z are defined such that $\arg w = \frac{\pi}{20}$, $ w = 3$ and $\arg z = \frac{7\pi}{20}$.	The complex numbers w and z are defined such that $\arg w = \frac{\pi}{10}$, $ w = 5$ and $\arg z = \frac{2\pi}{5}$.
Given that $\arg(w + 2) = \frac{1}{4}$, find the value of $ 2 $	Given that $\arg(w + 2) = \frac{1}{5}$, find the value of $ 2 $
	2.63 (3 sf)