Chapter 2b - Series (Year 2) Maclaurin Expansion

1:: Method of differences

Given that

$$(2r+1)^3 = Ar^3 + Br^2 + Cr + 1$$
,

- (a) find the values of the constants A, B and C.
- (b) Show that

$$(2r+1)^3 - (2r-1)^3 = 24r^2 + 2$$
.

(c) Using the result in part (b) and the method of differences, show that

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1).$$

(5)

(2)

(2)

2:: Maclaurin Expansions

Representing functions as a power series (i.e. infinitely long polynomial)

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

3:: Maclaurin Expansions for **Composite Functions**

"Given that terms in x^n , n > 4may be neglected, use the series for e^x and $\sin x$ to show that

$$e^{\sin x}\approx 1+x+\frac{x^2}{2}"$$

Higher Derivatives

	Original Function	1 st Derivative	2 nd Derivative	$n^{ ext{ iny th}}$ Derivative
Lagrange's Notation	f(x)	f'(x)	f''(x)	$f^{(n)}(x)$
Leibniz's Notation	у	$\frac{dy}{dx}$	$\frac{d^2y}{dx^2}$	$\frac{d^n y}{dx^n}$
Newton's Notation	у	ý	ÿ	$\overset{\scriptscriptstyle{n}}{\dot{\mathcal{Y}}}$

Given that $y = \ln(1 - x)$, find the value of $\frac{d^3y}{dx^3}$ when $x = \frac{1}{2}$.

```
f(x)=e^{x^2}.
```

- (a) Show that f'(x) = 2x f(x)
- (b) By differentiating the result in part a twice more with respect to x, show that: (i) f''(x) = 2f(x) + 2x f'(x)(ii) f'''(x) = 2xf''(x) + 4f'(x)

(c) Deduce the values of f'(0), f''(0), f'''(0)

Given that $f(x) = x^2 e^{-x}$

Show that $f'''(x) = (6x - 6 - x^2)e^{-x}$

Why we might represent functions as power series?

Example:
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

 $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ Recall that a **polynomial** is an expression of the form $a + bx + cx^2 + \cdots$, i.e. a sum of x terms with non-negative integer powers. A **power series** is an infinitely long polynomial.

- Not all functions can be integrated. For example, there is no way in which we can write $\int x^x dx$ in terms of standard mathematical functions. $\int e^{x^2} dx$ is another well known example of a function we can't integrate. Since the latter is used in the probability (density) function of a Normal Distribution, and we'd have to integrate to find the cumulative distribution function, this explains why it's not possible to calculate z-values on a calculator. However, polynomials integrate very easily. We can approximate integrals to any arbitrary degree of accuracy by replacing the function with its power series.
- It allows us/calculators to find irrational numbers in decimal form to an arbitrary amount

Since for example $\tan^{-1}(x) = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$ then plugging in 1, we get $\tan^{-1}(1) = \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7}$ and hence $\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \cdots$ *. We can similarly find e.

It allows us to find approximate solutions to more difficult differential equations.

^{*} This is a poor method of generating digits of π though: because the denominator is only increasing by 2 each time, it converges very slowly! There are better power series where the denominator has a much higher growth rate and hence the terms become smaller quicker.