2.2) Higher derivatives

Given that $y = \ln(1 + x)$, find the value of $\frac{d^3y}{dx^3}$ when $x=\frac{1}{2}$

Given that
$$y = \ln(1 - x)$$
, find the value of $\frac{d^3y}{dx^3}$ when $x = \frac{1}{2}$

-16

$$dx^3$$
 2

$$dx^3$$
 2

$$\frac{1}{dx^3}$$
 when $x = \frac{1}{2}$

$$\frac{d^3y}{dx^3} \, \mathsf{W}$$

Worked example	Your turn
Given that $y = \sec 3x$, find the value of $\frac{d^3y}{dx^3}$ when $x = \frac{\pi}{4}$	Given that $y = \sin^2 3x$, find the value of $\frac{d^4y}{dx^4}$ when $x = \frac{\pi}{6}$

$$f(x) = \ln\left(x + \sqrt{1 + x^2}\right)$$

- (a) Show that $(1+x^2)f'''(x) + 3xf''(x) + f'(x) = 0$
- (b) Deduce the values of f'(0), f''(0), f'''(0)

$$f(x) = e^{x^2}$$
 (a) Show that:

- (i) f'(x) = 2x f(x)
- (ii) f''(x) = 2f(x) + 2x f'(x)
- (iii) f'''(x) = 2xf''(x) + 4f'(x)
- (b) Deduce the values of f'(0), f''(0), f'''(0)
- (a) Shown

(b)
$$f(0) = 1$$

$$f'(0)=0$$

$$f''(0)=2$$

$$f^{\prime\prime\prime}(0)=0$$