2A Method of Differences

1.

a) Show that:

$$
4 r^{3}=r^{2}(r+1)^{2}-(r-1)^{2} r^{2}
$$

b) Hence, prove using the method of differences that:

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

2. Verify that

$$
\frac{1}{r(r+1)}=\frac{1}{r}-\frac{1}{r+1}
$$

And hence find the following using the method of differences:

$$
\sum_{r=1}^{n} \frac{1}{r(r+1)}
$$

3. Find the following summation using the method of differences:

$$
\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}
$$

4.

a) Express the following using partial fractions:

$$
\frac{2}{(r+1)(r+3)}
$$

b) Hence prove, by the method of differences, that:

$$
\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)}=\frac{n(a n+b)}{6(n+2)(n+3)}
$$

Where a and b are constants to be found.
c) Find the value of the following to 5 decimal places:

$$
\sum_{r=21}^{30} \frac{2}{(r+1)(r+3)}
$$

