## Core Pure 1 Argand diagrams

## **Chapter Overview**

- 1: Represent complex numbers on an Argand Diagram.
- 2: Put a complex number in modulus-argument form.
- **3:** Identify loci and regions.

| Topics                               | What students need to learn: |                                                                                                                                           |                                                                                                                                                                                                               |
|--------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Content                      |                                                                                                                                           | Guidance                                                                                                                                                                                                      |
| 2<br>Complex<br>numbers<br>continued | 2.4                          | Use and interpret Argand diagrams.                                                                                                        | Students should be able to represent the sum or difference of two complex numbers on an Argand diagram.                                                                                                       |
|                                      | 2.5                          | Convert between the<br>Cartesian form and the<br>modulus-argument form of a<br>complex number.                                            |                                                                                                                                                                                                               |
|                                      |                              | Knowledge of radians is assumed.                                                                                                          |                                                                                                                                                                                                               |
|                                      | 2.6                          | Multiply and divide complex<br>numbers in modulus<br>argument form.<br>Knowledge of radians and<br>compound angle formulae is<br>assumed. | Knowledge of the results, $  z_1 z_2  =  z_1   z_2 ,  \left \frac{z_1}{z_2}\right  = \frac{ z_1 }{ z_2 } $ $ \arg(z_1 z_2) = \arg z_1 + \arg z_2 $ $ \arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2 $ |
|                                      | 2.7                          | Construct and interpret simple loci in the argand diagram such as $ z-a >r$ and $\arg{(z-a)}=\theta$ Knowledge of radians is assumed.     | To include loci such as $ z-a =b$ , $ z-a = z-b $ , $\arg{(z-a)}=\beta$ , and regions such as $ z-a \leqslant z-b $ , $ z-a \leqslant b$ , $\alpha<\arg{(z-a)}<\beta$                                         |

## **Argand diagrams**

Just as x-y axes were a useful way to visualise coordinates, an Argand diagram allows us to visualise complex numbers.



