2A Method of Differences

1.

a) Show that:

$$
4 r^{3}=r^{2}(r+1)^{2}-(r-1)^{2} r^{2}
$$

b) Hence, prove using the method of differences that:

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

2. Verify that

$$
\frac{1}{r(r+1)}=\frac{1}{r}-\frac{1}{r+1}
$$

And hence find the following using the method of differences:

$$
\sum_{r=1}^{n} \frac{1}{r(r+1)}
$$

3. Find the following summation using the method of differences:

$$
\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}
$$

4.

a) Express the following using partial fractions:

$$
\frac{2}{(r+1)(r+3)}
$$

b) Hence prove, by the method of differences, that:

$$
\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)}=\frac{n(a n+b)}{6(n+2)(n+3)}
$$

Where a and b are constants to be found.
c) Find the value of the following to 5 decimal places:

$$
\sum_{r=21}^{30} \frac{2}{(r+1)(r+3)}
$$

2B Higher Derivatives for Maclaurin Series

1. Given that:

$$
y=\ln (1-x)
$$

Find the value of:

$$
\left(\frac{d^{3} y}{d x^{3}}\right)_{\frac{1}{2}}
$$

2. Given that:

$$
f(x)=e^{x^{2}}
$$

a) Show that:

$$
f^{\prime}(x)=2 x f(x)
$$

b) By differentiating the result twice more with respect to x, find $f^{\prime \prime}(x)$ and $f^{\prime \prime \prime}(x)$
c) Deduce the values of $f(0), f^{\prime}(0), f^{\prime \prime}(0)$ and $f^{\prime \prime \prime}(0)$

2C Maclaurin Series

1. Given that $f(x)=e^{x}$ can be written in the form:

$$
e^{x}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{r} x^{r}
$$

And that it is valid to differentiate an infinite series term by term, show that:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{r}}{r!}
$$

Generalising:

2.

a) Express $\ln (1+x)$ as an infinite series in ascending powers of x, up to and including the term in x^{3}
b) Using this series, find approximate values for:
i) $\quad \ln (1.05)$
ii) $\quad \ln (1.25)$
iii) $\quad \ln (1.8)$
3. Find the Maclaurin expansion for $\sin x$, up to the term in x^{5}. Then use your expansion to find an approximation for $\sin 10^{\circ}$.
4. Find the Maclaurin expansion for $\cos x$, up to the term in x^{4}.
5. Proving Euler's relation:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

2D Composite Maclaurin Series

Formula Book Formulae:

Maclaurin's and Taylor's Series

$$
\begin{aligned}
& \mathrm{f}(x)=\mathrm{f}(0)+x \mathrm{f}^{\prime}(0)+\frac{x^{2}}{2!} \mathrm{f}^{\prime \prime}(0)+\ldots+\frac{x^{r}}{r!} \mathrm{f}^{(r)}(0)+\ldots \\
& \mathrm{e}^{x}=\exp (x)=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{r}}{r!}+\ldots \quad \text { for all } x \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{r+1} \frac{x^{r}}{r}+\ldots \quad(-1<x \leqslant 1) \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+(-1)^{r} \frac{x^{2 r+1}}{(2 r+1)!}+\ldots \quad \text { for all } x \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+(-1)^{r} \frac{x^{2 r}}{(2 r)!}+\ldots \quad \text { for all } x \\
& \arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots+(-1)^{r} \frac{x^{2 r+1}}{2 r+1}+\ldots \quad(-1 \leqslant x \leqslant 1)
\end{aligned}
$$

1. Write down the first 4 non-zero terms in the series expansion of $\cos \left(2 x^{2}\right)$
2. Find the first 4 non-zero terms in the series expansion of:

$$
\ln \left\{\frac{\sqrt{1+2 x}}{1-3 x}\right\}
$$

3. Given that terms in $x^{n}, n>4$ can be ignored, show, using the series expansions of e^{x} and $\sin x$, that:

$$
e^{\sin x} \approx 1+x+\frac{x^{2}}{2}-\frac{x^{4}}{8}
$$

