2) Series

2.1) The method of differences

2.2) Higher derivatives

2.3) Maclaurin series

2.4) Series expansions of compound functions

2.1) The method of differences

Chapter CONTENTS

Worked example	Your turn
Show that $r = \frac{1}{2}(r(r+1) - r(r-1))$ Hence prove, by the method of differences, that $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$	Show that $4r^{3} = r^{2}(r+1)^{2} - (r-1)^{2}r^{2}$ Hence prove, by the method of differences, that $\sum_{r=1}^{n} r^{3} = \frac{1}{4}n^{2}(n+1)^{2}$ Shown

Worked example	Your turn
Find, using the method of differences, $\sum_{r=1}^{n} \frac{1}{(r+2)(r+3)}$	Find, using the method of differences, $\sum_{r=1}^{n} \frac{1}{r(r+1)}$
	$\frac{n}{n+1}$

Worked example	Your turn
Find, using the method of differences, $\sum_{r=1}^{n} \frac{2}{r(r+2)}$	Find, using the method of differences, $\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)}$ $\frac{n(5n+13)}{6(n+2)(n+3)}$

Worked example	Your turn
Find, using the method of differences, $\sum_{r=1}^{n} \frac{2}{(4r^2 + 8r + 3)}$	Find, using the method of differences, $\sum_{r=1}^{n} \frac{2}{4r^2 - 1}$
	$\frac{2n}{2n+1}$

Worked example	Your turn
Find the value of $\sum_{r=100}^{200} \frac{4}{(4r-1)(4r+3)}$ to 4 decimal places	Find the value of $\sum_{r=16}^{25} \frac{4}{(2r+1)(2r+5)}$ to 4 decimal places 0.0218 (4 dp)

2.2) Higher derivatives

Chapter CONTENTS

Worked example	Your turn
Worked example Given that $y = \ln(1 + x)$, find the value of $\frac{d^3y}{dx^3}$ when $x = \frac{1}{2}$	Your turnGiven that $y = \ln(1 - x)$, find the value of $\frac{d^3y}{dx^3}$ when $x = \frac{1}{2}$ -16

Worked example	Your turn
Given that $y = \sec 3x$, find the value of $\frac{d^3y}{dx^3}$ when $x = \frac{\pi}{4}$	Given that $y = \sin^2 3x$, find the value of $\frac{d^4y}{dx^4}$ when $x = \frac{\pi}{c}$
4	648

Worked example	Your turn
$f(x) = \ln \left(x + \sqrt{1 + x^2} \right)$ (a) Show that $(1 + x^2)f'''(x) + 3xf''(x) + f'(x) = 0$ (b) Deduce the values of $f'(0), f''(0), f'''(0)$	$f(x) = e^{x^{2}}$ (a) Show that: (i) $f'(x) = 2x f(x)$ (ii) $f''(x) = 2f(x) + 2x f'(x)$ (iii) $f'''(x) = 2xf''(x) + 4f'(x)$ (b) Deduce the values of $f'(0), f''(0), f'''(0)$ (a) Shown (b) $f(0) = 1$ f'(0) = 0 f''(0) = 2 f'''(0) = 0

2.3) Maclaurin series

Chapter CONTENTS

Worked example	Your turn
Find the Maclaurin series for $\frac{1}{1-x}$	Find the Maclaurin series for $\sqrt{1 + x}$ $\sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$

Worked example	Your turn
Find the Maclaurin series for $ln(1 + x)$	Find the Maclaurin series for e^x
	$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + \dots$

Worked example	Your turn
Find the Maclaurin series for $\cos^2 x$ up to and including the term in x^4	Find the Maclaurin series for $\sin^2 x$ up to and including the term in x^4
	$x^2 - \frac{x^4}{3} + \cdots$

Worked example	Your turn
 (a) Find the Maclaurin series for cos x (b) Use the first three terms of the series to find an approximation for cos 30° 	 (a) Find the Maclaurin series for sin x (b) Use the first two terms of the series to find an approximation for sin 10° (a) cos(x) = 1 - x²/2! + x⁴/4! - x⁶/6! + + (-1)^r x^{2r}/(2r)! + (b) 0.17365 (5 dp)

2.4) Series expansions of compound functions Chapter CONTENTS

Worked example	Your turn
Find the Maclaurin series for e^{4x} up to and including the term in x^4	Find the Maclaurin series for e^{3x} up to and including the term in x^4
	$e^{3x} = 1 + 3x + \frac{9x^2}{2} + \frac{9x^3}{2} + \frac{27x^4}{8} + \cdots$

Worked example	Your turn
Find the Maclaurin series for $\ln(1 + 3x)$ up to and including the term in x^4	Find the Maclaurin series for $\ln(1 + 2x)$ up to and including the term in x^4
	$\ln(1+2x) = 2x - 2x^2 + \frac{8x^3}{3} - 4x^4 + \cdots$

Worked example	Your turn
Write down the first four non-zero terms in the series expansion, in ascending powers of x, of $sin(4x^3)$	Write down the first four non-zero terms in the series expansion, in ascending powers of x, of $\cos(2x^2)$ $1 - 3x^4 + \frac{2}{3}x^8 - \frac{4}{45}x^{12} + \cdots$

Worked example	Your turn
Find the first three non-zero terms of the	Find the first three non-zero terms of the
series expansion of $\ln\left(\frac{\sqrt{1+3x}}{1-2x}\right)$, and state the	series expansion of $\ln\left(\frac{\sqrt{1+2x}}{1-3x}\right)$, and state the
interval in x for which the expansion is valid.	interval in x for which the expansion is valid.
	7 21

$$4x + \frac{7}{2}x^2 + \frac{31}{3}x^3 + \cdots$$

Valid for $-\frac{1}{3} \le x < \frac{1}{3}$

Worked example	Your turn
Find the first three terms in the Maclaurin series expansion of $e^{\cos x}$	Find the first three terms in the Maclaurin series expansion of $e^{\sin x}$
	$1 + x + \frac{x^2}{2}$

Worked example	Your turn
Find the series expansions, up to and including the term in x^4 , of: $ln(1 + 2x - 3x^2)$ State the range of values of x for which the expansion is valid	Find the series expansions, up to and including the term in x^4 , of: $ln(1 + x - 2x^2)$ State the range of values of x for which the expansion is valid
	$x - \frac{5x^2}{2} + \frac{7x^3}{3} - \frac{17x^4}{4} + \dots -\frac{1}{2} < x \le \frac{1}{2}$

Worked example	Your turn
Find the series expansions, up to and including the term in x^4 , of: $ln(16 + 8x + x^2)$ State the range of values of x for which the expansion is valid	Find the series expansions, up to and including the term in x^4 , of: $\ln(9 + 6x + x^2)$ State the range of values of x for which the expansion is valid
	$2\ln 3 + \frac{2x}{3} - \frac{x^2}{9} + \frac{2x^3}{81} - \frac{x^4}{162} + \dots \\ -3 < x \le 3$

Worked example	Your turn
Find the series expansion, up to and including the term in x^4 , of: $ln(16 + 8x + x^2)$ State the range of values of x for which the expansion is valid	Find the series expansion, up to and including the term in x^4 , of: $\ln(9 + 6x + x^2)$ State the range of values of x for which the expansion is valid
	$2\ln 3 + \frac{2x}{3} - \frac{x^2}{9} + \frac{2x^3}{81} - \frac{x^4}{162} + \dots -3 < x \le 3$

Worked example	Your turn
Using the first two terms, $x - \frac{x^3}{3}$, in the expansion of $\arctan x$, find the first four terms of $e^{\arctan x}$ Deduce the first four terms in the series expansion of $e^{-\arctan x}$	Using the first two terms, $x + \frac{x^3}{3}$, in the expansion of $\tan x$, find the first four terms of $e^{\tan x}$ Deduce the first four terms in the series expansion of $e^{-\tan x}$ $e^{\tan x} = 1 + x + \frac{x^2}{2} + \frac{x^3}{2} + \cdots$ $e^{-\tan x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \cdots$