2) Series

2.1) The method of differences
2.2) Higher derivatives
2.3) Maclaurin series
2.4) Series expansions of compound functions

Show that $r=\frac{1}{2}(r(r+1)-r(r-1))$
Hence prove, by the method of differences, that

$$
\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)
$$

Show that

$$
4 r^{3}=r^{2}(r+1)^{2}-(r-1)^{2} r^{2}
$$

Hence prove, by the method of differences, that

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

Shown

Find, using the method of differences,

$$
\sum_{r=1}^{n} \frac{1}{(r+2)(r+3)}
$$

Find, using the method of differences,

$$
\sum_{r=1}^{n} \frac{1}{r(r+1)}
$$

$$
\frac{n}{n+1}
$$

Find, using the method of differences,

$$
\sum_{r=1}^{n} \frac{2}{r(r+2)}
$$

Find, using the method of differences,

$$
\begin{aligned}
& \sum_{r=1}^{n} \frac{2}{(r+1)(r+3)} \\
& \frac{n(5 n+13)}{6(n+2)(n+3)}
\end{aligned}
$$

Worked example

Find, using the method of differences,

$$
\sum_{r=1}^{n} \frac{2}{\left(4 r^{2}+8 r+3\right)}
$$

Find, using the method of differences,

$$
\begin{gathered}
\sum_{r=1}^{n} \frac{2}{4 r^{2}-1} \\
\frac{2 n}{2 n+1}
\end{gathered}
$$

Worked example
Find the value of
$\sum_{r=100}^{200} \frac{4}{(4 r-1)(4 r+3)}$
to 4 decimal places

Find the value of

$$
\sum_{r=16}^{25} \frac{4}{(2 r+1)(2 r+5)}
$$

to 4 decimal places

$$
0.0218 \text { (4dp) }
$$

Your turn

Given that $y=\ln (1+x)$, find the value of $\frac{d^{3} y}{d x^{3}}$ when $x=\frac{1}{2}$

Given that $y=\ln (1-x)$, find the value of $\frac{d^{3} y}{d x^{3}}$ when $x=\frac{1}{2}$

Your turn

Given that $y=\sec 3 x$, find the value of $\frac{d^{3} y}{d x^{3}}$ when $x=\frac{\pi}{4}$

Given that $y=\sin ^{2} 3 x$, find the value of $\frac{d^{4} y}{d x^{4}}$ when $x=\frac{\pi}{6}$

Worked example

Your turn

$$
f(x)=\ln \left(x+\sqrt{1+x^{2}}\right)
$$

(a) Show that

$$
\left(1+x^{2}\right) f^{\prime \prime \prime}(x)+3 x f^{\prime \prime}(x)+f^{\prime}(x)=0
$$

(b) Deduce the values of $f^{\prime}(0), f^{\prime \prime}(0), f^{\prime \prime \prime}(0)$

$$
f(x)=e^{x^{2}}
$$

(a) Show that:
(i) $f^{\prime}(x)=2 x f(x)$
(ii) $f^{\prime \prime}(x)=2 f(x)+2 x f^{\prime}(x)$
(iii) $f^{\prime \prime \prime}(x)=2 x f^{\prime \prime}(x)+4 f^{\prime}(x)$
(b) Deduce the values of $f^{\prime}(0), f^{\prime \prime}(0), f^{\prime \prime \prime}(0)$
(a) Shown
(b) $f(0)=1$
$f^{\prime}(0)=0$
$f^{\prime \prime}(0)=2$
$f^{\prime \prime \prime}(0)=0$
2.3) Maclaurin series

Your turn

Find the Maclaurin series for $\frac{1}{1-x}$
Find the Maclaurin series for $\sqrt{1+x}$

$$
\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots
$$

Your turn

Find the Maclaurin series for $\ln (1+x)$
Find the Maclaurin series for e^{x}

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

Your turn

Find the Maclaurin series for $\cos ^{2} x$ up to and including the term in x^{4}

Find the Maclaurin series for $\sin ^{2} x$ up to and including the term in x^{4}

$$
x^{2}-\frac{x^{4}}{3}+\cdots
$$

(a) Find the Maclaurin series for $\cos x$
(b) Use the first three terms of the series to find an approximation for $\cos 30^{\circ}$
(a) Find the Maclaurin series for $\sin x$
(b) Use the first two terms of the series to find an approximation for $\sin 10^{\circ}$
(a) $\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{r} \frac{x^{2 r}}{(2 r)!}+\cdots$ (b) 0.17365 (5 dp)

Your turn

Find the Maclaurin series for $e^{4 x}$ up to and including the term in x^{4}

Find the Maclaurin series for $e^{3 x}$ up to and including the term in x^{4}

$$
e^{3 x}=1+3 x+\frac{9 x^{2}}{2}+\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}+\cdots
$$

Find the Maclaurin series for $\ln (1+3 x)$ up to and including the term in x^{4}

Find the Maclaurin series for $\ln (1+2 x)$ up to and including the term in x^{4}

$$
\ln (1+2 x)=2 x-2 x^{2}+\frac{8 x^{3}}{3}-4 x^{4}+\cdots
$$

Your turn

Write down the first four non-zero terms in the series expansion, in ascending powers of x, of

$$
\sin \left(4 x^{3}\right)
$$

Write down the first four non-zero terms in the series expansion, in ascending powers of x, of

$$
\begin{gathered}
\cos \left(2 x^{2}\right) \\
1-3 x^{4}+\frac{2}{3} x^{8}-\frac{4}{45} x^{12}+\cdots
\end{gathered}
$$

Find the first three non-zero terms of the series expansion of $\ln \left(\frac{\sqrt{1+3 x}}{1-2 x}\right)$, and state the interval in x for which the expansion is valid.

Find the first three non-zero terms of the series expansion of $\ln \left(\frac{\sqrt{1+2 x}}{1-3 x}\right)$, and state the interval in x for which the expansion is valid.

$$
\begin{gathered}
4 x+\frac{7}{2} x^{2}+\frac{31}{3} x^{3}+\cdots \\
\text { Valid for }-\frac{1}{3} \leq x<\frac{1}{3}
\end{gathered}
$$

Your turn

Find the first three terms in the Maclaurin series expansion of $e^{\cos x}$

Find the first three terms in the Maclaurin series expansion of $e^{\sin x}$

$$
1+x+\frac{x^{2}}{2}
$$

Your turn

Find the series expansions, up to and including the term in x^{4}, of:

$$
\ln \left(1+2 x-3 x^{2}\right)
$$

State the range of values of x for which the expansion is valid

Find the series expansions, up to and including the term in x^{4}, of:

$$
\ln \left(1+x-2 x^{2}\right)
$$

State the range of values of x for which the expansion is valid

$$
\begin{gathered}
x-\frac{5 x^{2}}{2}+\frac{7 x^{3}}{3}-\frac{17 x^{4}}{4}+\cdots \\
-\frac{1}{2}<x \leq \frac{1}{2}
\end{gathered}
$$

Your turn

Find the series expansions, up to and including the term in x^{4}, of:

$$
\ln \left(16+8 x+x^{2}\right)
$$

State the range of values of x for which the expansion is valid

Find the series expansions, up to and including the term in x^{4}, of:

$$
\ln \left(9+6 x+x^{2}\right)
$$

State the range of values of x for which the expansion is valid

$$
\begin{gathered}
2 \ln 3+\frac{2 x}{3}-\frac{x^{2}}{9}+\frac{2 x^{3}}{81}-\frac{x^{4}}{162}+\cdots \\
-3<x \leq 3
\end{gathered}
$$

Find the series expansion, up to and including the term in x^{4}, of:

$$
\ln \left(16+8 x+x^{2}\right)
$$

State the range of values of x for which the expansion is valid

Find the series expansion, up to and including the term in x^{4}, of:

$$
\ln \left(9+6 x+x^{2}\right)
$$

State the range of values of x for which the expansion is valid

$$
\begin{gathered}
2 \ln 3+\frac{2 x}{3}-\frac{x^{2}}{9}+\frac{2 x^{3}}{81}-\frac{x^{4}}{162}+\cdots \\
-3<x \leq 3
\end{gathered}
$$

Your turn

Using the first two terms, $x-\frac{x^{3}}{3}$, in the expansion of $\arctan x$, find the first four terms of $e^{\arctan x}$
Deduce the first four terms in the series expansion of $e^{-\arctan x}$

Using the first two terms, $x+\frac{x^{3}}{3}$, in the expansion of $\tan x$, find the first four terms of $e^{\tan x}$
Deduce the first four terms in the series expansion of $e^{-\tan x}$

$$
\begin{aligned}
e^{\tan x} & =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\cdots \\
e^{-\tan x} & =1-x+\frac{x^{2}}{2}-\frac{x^{3}}{2}+\cdots
\end{aligned}
$$

