2) Argand diagrams

2.1) Argand diagrams
2.2) Modulus and argument
2.3) Modulus-argument form of complex numbers
2.4) Loci in the Argand diagram
2.5) Regions in the Argand diagram
2.1) Argand diagrams

$$
8+6 i
$$

$$
1-i
$$

$$
-2
$$

$$
-1-3 i
$$

$$
-1+3 i
$$

Plot on an Argand diagram:
$4+3 i$
$3 i-4$

$$
3-4 i
$$

2.2) Modulus and argument

Determine the modulus and argument:
$4+3 i$
$-1+i$
$-2 i$
$-1-3 i$

Determine the modulus and argument:
$8+6 i$
Modulus $=10$
Argument $=0.644(3 \mathrm{sf})$
$1-i$
Modulus $=\sqrt{2}$
Argument $=-\frac{\pi}{4}$

$$
-2
$$

Modulus $=2$
Argument $= \pm \pi$
$-1+3 i$
Modulus $=\sqrt{10}$
Argument $=1.25(3 \mathrm{sf})$

$$
z=3-2 i
$$

$$
z=2-3 i
$$

Find:
a) z^{2}
b) $\left|z^{2}\right|$

Find:
a) z^{2}
b) $\left|z^{2}\right|$
c) $\arg \left(z^{2}\right)$
d) Show z and z^{2} on an Argand diagram
(a) $-5-12 i$
(b) 13
(c) -1.97 (3 sf)
(d) Shown
d) Show z and z^{2} on an Argand diagram

Your turn

$$
w=2+3 i
$$

$$
w=2+5 i
$$

Given that $\arg (\lambda+5 i+w)=\frac{\pi}{4}$, where λ is a real constant, find the value of λ

Your turn

The complex numbers w and z are given by $w=k-i$ and $z=3-5 k i$, where k is a real constant. Given that $\arg (w+z)=\frac{\pi}{3}$, find the exact value of k

The complex numbers w and z are given by $w=k+i$ and $z=-4+5 k i$, where k is a real constant. Given that $\arg (w+z)=\frac{2 \pi}{3}$, find the exact value of k

$$
k=\frac{21 \sqrt{3}-17}{22}
$$

Your turn

The complex numbers w and z are defined such that $\arg w=\frac{\pi}{20},|w|=3$ and $\arg z=\frac{7 \pi}{20}$.
Given that $\arg (w+z)=\frac{\pi}{4}$, find the value of $|z|$

The complex numbers w and z are defined such that $\arg w=\frac{\pi}{10},|w|=5$ and $\arg z=\frac{2 \pi}{5}$.
Given that $\arg (w+z)=\frac{\pi}{5}$, find the value of $|z|$
2.63 (3 sf)
2.3) Modulus-argument form of complex numbers

Express $z=-1+i$ in the form $r(\cos \theta+i \sin \theta)$ where $-\pi<\theta \leq \pi$

Express $z=-1-i$ in the form $r(\cos \theta+i \sin \theta)$ where $-\pi<\theta \leq \pi$

$$
r=\sqrt{2}\left(\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right)
$$

Express $z=-\sqrt{3}+i$ in the form $r(\cos \theta+i \sin \theta)$ where $-\pi<\theta \leq \pi$

Express $z=-1-\sqrt{3} i$ in the form $r(\cos \theta+i \sin \theta)$ where $-\pi<\theta \leq \pi$

$$
r=2\left(\cos \left(-\frac{2 \pi}{3}\right)+i \sin \left(-\frac{2 \pi}{3}\right)\right)
$$

Your turn

The complex number z is such that $|\mathrm{z}|=3$ and $\arg z=\frac{\pi}{4}$. Find z in the form $a+b i$, where a and b are exact real numbers to be found.

The complex number z is such that $|z|=5$ and $\arg z=\frac{3 \pi}{4}$. Find z in the form $a+b i$, where a and b are exact real numbers to be found.

$$
a=-\frac{5 \sqrt{2}}{2}, b=\frac{5 \sqrt{2}}{2}
$$

Your turn

$$
\begin{aligned}
& z_{1}=6\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right) \\
& z_{2}=3\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
\end{aligned}
$$

Find:
i) $\left|z_{1} z_{2}\right|$
ii) $\arg \left(z_{1} z_{2}\right)$
iii) $z_{1} z_{2}$ in the form $r(\cos \theta+i \sin \theta)$
iv) $z_{1} z_{2}$ in the form $x+i y$

$$
\begin{aligned}
& z_{1}=8\left(\cos \frac{7 \pi}{10}+i \sin \frac{7 \pi}{10}\right) \\
& z_{2}=4\left(\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}\right)
\end{aligned}
$$

Find:
i) $\left|z_{1} z_{2}\right|$

$$
32
$$

ii) $\arg \left(z_{1} z_{2}\right)$

$$
-\frac{\pi}{2}
$$

iii) $z_{1} z_{2}$ in the form $r(\cos \theta+i \sin \theta)$

$$
32\left(\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right)
$$

iv) $z_{1} z_{2}$ in the form $x+i y$

$$
-32 i
$$

Your turn

$$
\begin{aligned}
& z_{1}=6\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right) \\
& z_{2}=3\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
\end{aligned}
$$

Find:
i) $\left|\frac{z_{1}}{z_{2}}\right|$

$$
\begin{aligned}
& z_{1}=8\left(\cos \frac{7 \pi}{10}+i \sin \frac{7 \pi}{10}\right) \\
& z_{2}=4\left(\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}\right)
\end{aligned}
$$

Find:
i) $\left|\frac{z_{1}}{z_{2}}\right|$

2
ii) $\arg \left(\frac{z_{1}}{z_{2}}\right)$

$$
-\frac{\pi}{10}
$$

iii) $\frac{z_{1}}{z_{2}}$ in the form $r(\cos \theta+i \sin \theta)$

$$
2\left(\cos \left(-\frac{\pi}{10}\right)+i \sin \left(-\frac{\pi}{10}\right)\right)
$$

iv) $\frac{z_{1}}{z_{2}}$ in the form $x+i y$

$$
1.90-0.618 \mathrm{i}
$$

Your turn

$$
\begin{aligned}
& z_{1}=6\left(\cos \frac{5 \pi}{12}-i \sin \frac{5 \pi}{12}\right) \\
& z_{2}=3\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
\end{aligned}
$$

Find:
i) $\left|z_{1} z_{2}\right|$
ii) $\arg \left(z_{1} z_{2}\right)$
iii) $z_{1} z_{2}$ in the form $r(\cos \theta+i \sin \theta)$
iv) $z_{1} z_{2}$ in the form $x+i y$

$$
\begin{aligned}
& z_{1}=8\left(\cos \frac{7 \pi}{10}+i \sin \frac{7 \pi}{10}\right) \\
& z_{2}=4\left(\cos \frac{4 \pi}{5}-i \sin \frac{4 \pi}{5}\right)
\end{aligned}
$$

Find:
i) $\left|z_{1} z_{2}\right|$ 32
ii) $\arg \left(z_{1} z_{2}\right)$

$$
-\frac{\pi}{10}
$$

iii) $z_{1} z_{2}$ in the form $r(\cos \theta+i \sin \theta)$

$$
32\left(\cos \left(-\frac{\pi}{10}\right)+i \sin \left(-\frac{\pi}{10}\right)\right)
$$

iv) $z_{1} z_{2}$ in the form $x+i y$

$$
30.4-9.89 i
$$

2.4) Loci in the Argand diagram

Your turn

Sketch the locus of points represented by

$$
|z|=3
$$

$$
|z|=4
$$

Your turn

Sketch the locus of points represented by $|z+3-5 i|=2$ and find its Cartesian equation

Sketch the locus of points represented by

$$
|z-3+5 i|=4
$$

and find its Cartesian equation

Draw the locus of points that satisfy:

$$
|z-5-3 i|=6
$$

and find its Cartesian equation

$$
\begin{aligned}
& \text { Circle centre }(5,3) \text { radius } 6 \\
& (x-5)^{2}+(y-3)^{2}=36
\end{aligned}
$$

Your turn

Sketch the locus of points represented by

$$
|3-z|=5
$$

and find its Cartesian equation

Sketch the locus of points represented by $|2 i-z|=4$
and find its Cartesian equation

Sketch the locus of points represented by $|2-3 i-z|=2$
and find its Cartesian equation

Draw the locus of points that satisfy:

$$
|3-2 i-z|=3
$$

and find its Cartesian equation

$$
\begin{aligned}
& \text { Circle centre }(3,-2) \text { radius } 3 \\
& \quad(x-2)^{2}+(y+2)^{2}=9
\end{aligned}
$$

Your turn

A complex number z is represented by the point P. Given that $|z-3+5 i|=2$
(a) Sketch the locus of P
(b) Find the Cartesian equation of the locus.
(c) Find the maximum value of $\arg z$ in the interval $(-\pi, \pi)$
(d) Find the minimum and maximum values of $|z|$

A complex number z is represented by the point P. Given that $|z-5-3 i|=3$
(a) Sketch the locus of P
(b) Find the Cartesian equation of the locus.
(c) Find the maximum value of $\arg z$ in the interval $(-\pi, \pi)$
(d) Find the minimum and maximum values of $|z|$
(a) Circle centre $(5,3)$ radius 3
(b) $(x-5)^{2}+(y-3)^{2}=36$
(c) $1.08(3 \mathrm{sf})$
(d) $\operatorname{Max}|z|=\sqrt{34}+3$

Min $|z|=\sqrt{34}-3$

Your turn

Sketch the locus of points represented by
$|z|=|z+4 i|$ and find its Cartesian equation

Sketch the locus of points represented by

$$
|z|=|z-5|
$$

and find its Cartesian equation

Sketch the locus of points represented by

$$
|z|=|z-6 i|
$$

and find its Cartesian equation

$$
\begin{aligned}
& \text { Perpendicular bisector of }(0,0) \text { and }(0,6) \\
& \qquad y=3
\end{aligned}
$$

Your turn

Sketch the locus of points represented by $|z-3 i|=|z+1|$ and find its Cartesian equation

Sketch the locus of points represented by $|z-3|=|z+i|$
and find its Cartesian equation

Perpendicular bisector of $(3,0)$ and $(0,-1)$

$$
y=-3 x+4
$$

Find the Cartesian equation of the locus of z if $|z-3 i|=|z+1|$ and sketch the locus of z on an Argand diagram. Hence, find the least possible value of $|z|$.

Find the Cartesian equation of the locus of z if $|z-3|=|z+i|$, and sketch the locus of z on an Argand diagram.
Hence, find the least possible value of $|z|$.

$$
\frac{2 \sqrt{10}}{5}
$$

Given that the complex number z satisfies the equation $|z-8+6 i|=5$, find the minimum value of $|z|$ and the maximum.

Given that the complex number z satisfies the equation $|z-12-5 i|=3$, find the minimum value of $|z|$ and the maximum.

Your turn

Sketch the locus of points represented by

$$
\arg (z)=\frac{\pi}{4}
$$

and find its Cartesian equation
Sketch the locus of points represented by

$$
\arg (z)=\frac{\pi}{6}
$$

and find its Cartesian equation

$$
\begin{aligned}
& \text { Half-line from origin }(0,0) \\
& y=\frac{1}{\sqrt{3}} x, \quad x>0, y>0
\end{aligned}
$$

Sketch the locus of points represented by

$$
\arg (z)=\frac{\pi}{3}
$$

and find its Cartesian equation

Your turn

Sketch the locus of points represented by

$$
\arg (z-2+3 i)=\frac{\pi}{4}
$$

and find its Cartesian equation

Sketch the locus of points represented by

$$
\arg (z+3+2 i)=\frac{3 \pi}{4}
$$

and find its Cartesian equation

$$
\begin{gathered}
\text { Half-line from }(-3,-2) \\
y=-x-5, \quad x<-3, y>-2
\end{gathered}
$$

Find the complex number z which satisfies both $|z+3-2 i|=50$ and $\arg (z+3-2 i)=\frac{\pi}{4}$

Find the complex number z which satisfies both $|z+3+2 i|=10$ and

$$
\arg (z+3+2 i)=\frac{3 \pi}{4}
$$

$$
z=(-3-5 \sqrt{2})+i(-2+5 \sqrt{2})
$$

If the complex number z satisfies both $\arg z=\frac{\pi}{4}$ and $\arg (z-3)=\frac{\pi}{2}$,
(a) Find the value of z
(b) Hence, find $\arg (z-6)$

If the complex number z satisfies both $\arg z=\frac{\pi}{3}$ and $\arg (z-4)=\frac{\pi}{2}$,
(a) Find the value of z
(b) Hence, find $\arg (z-8)$
(a) $z=4+4 \sqrt{3} i$
(b) $\frac{2 \pi}{3}$

Your turn

Given $|z+4-8 i|=3$, show that the maximum value of $\arg (z+12-5 i)$ in the interval $(-\pi, \pi)$ is $2 \arcsin \left(\frac{3}{\sqrt{73}}\right)$ maximum value of $\arg (z+15-2 i)$ in the interval $(-\pi, \pi)$ is $2 \arcsin \left(\frac{2}{\sqrt{53}}\right)$
2.5) Regions in the Argand diagram

Your turn

On an Argand diagram, shade the region for which

$$
|z-3+5 i| \leq 4
$$

On an Argand diagram, shade the region for which

$$
|z+3-5 i| \leq 2
$$

Inside of solid-lined circle, centre $(3,-5)$,
radius 2

Your turn

On an Argand diagram, shade the region for which

$$
2 \leq|z-3+5 i| \leq 4
$$

$2<|z-3-5 i| \leq 4$

On an Argand diagram, shade the region for which

$$
2 \leq|z+3-5 i|<4
$$

Region enclosed between two circles. One solid-lined circle centred $(-3,5)$ radius 2 One dotted-lined circle centred $(-3,5)$ radius 4

Your turn

On an Argand diagram, shade the region for which

$$
\begin{aligned}
& |z-3|<|z-5| \\
& |z-3 i|>|z+5|
\end{aligned}
$$

On an Argand diagram, shade the region for which

$$
|z+3|<|z-5 i|
$$

Dotted line perpendicular bisector of $(-3,0)$ and $(0,5)$. Shaded below the line

Your turn

On an Argand diagram, shade the region for which

$$
\begin{aligned}
& \{z \in \mathbb{C}:|z-4| \leq|z-8-6 i|\} \cap \\
& \left\{z \in \mathbb{C}: 0 \leq \arg (z-2-4 i) \leq \frac{\pi}{4}\right\}
\end{aligned}
$$

On an Argand diagram, shade the region for which

$$
\begin{aligned}
& \{z \in \mathbb{C}:|z-2| \leq|z-6-8 i|\} \cap \\
& \left\{z \in \mathbb{C}: 0 \leq \arg (z-4-2 i) \leq \frac{\pi}{2}\right\}
\end{aligned}
$$

Shaded region in first quadrant enclosed by half lines $x=4$ and $y=2$ both extending from (4,2) and perpendicular bisector of
$(2,0)$ and $(6,8) y=-\frac{1}{2} x+6$

Your turn

On an Argand diagram, shade the region for which

$$
0 \leq \arg (z-3-5 i) \leq \frac{\pi}{4}
$$

On an Argand diagram, shade the region for which

$$
0 \leq \arg (z+3-5 i) \leq \frac{\pi}{3}
$$

Shaded between two solid half-lines.
First half-line horizontal from point $(3,-5)$ in $4^{\text {th }}$ quadrant only
Second half-line from point $(3,-5)$ at angle of $\frac{\pi}{3}$ to the horizontal

