2) Argand diagrams

2.1) Argand diagrams

2.2) Modulus and argument

2.3) Modulus-argument form of complex numbers

2.4) Loci in the Argand diagram

2.5) Regions in the Argand diagram

2.1) Argand diagrams

Chapter CONTENTS

Worked example	Your turn
Plot on an Argand diagram: 4 + 3 <i>i</i>	Plot on an Argand diagram: 8 + 6 <i>i</i>
-1 + i	1-i
-2 <i>i</i>	-2
-1 - 3i	-1 + 3i

Worked example	Your turn
Plot on an Argand diagram: 4 + 3 <i>i</i>	Plot on an Argand diagram: —4 <i>i</i> + 3
3 <i>i</i> – 4	
3 – 4i	

2.2) Modulus and argument

Chapter CONTENTS

Worked example	Your turn
Determine the modulus and argument: $4 + 3i$	Determine the modulus and argument: 8 + 6i Modulus = 10 Argument = 0.644 (3 sf)
-1 + i	1-i Modulus = $\sqrt{2}$ Argument = $-\frac{\pi}{4}$
-2 <i>i</i>	-2 Modulus = 2 Argument = $\pm \pi$
-1 - 3i	-1 + 3i Modulus = $\sqrt{10}$ Argument = 1.25 (3 sf)

Worked example	Your turn
z = 3 - 2i Find: a) z^2	z = 2 - 3i Find: a) z^2 b) $ z^2 $ c) $\arg(z^2)$
b) z ²	d) Show z and z^2 on an Argand diagram (a) $-5 - 12i$ (b) 13 (c) -1.97 (3 sf)
c) $\arg(z^2)$	(d) Shown
d) Show z and z^2 on an Argand diagram	

Worked example	Your turn
w = 2 + 3i	w = 2 + 5i
Given that $\arg(\lambda + 5i + w) = \frac{\pi}{4}$, where λ	Given that $\arg(\lambda + 3i + w) = \frac{\pi}{4}$, where λ
is a real constant, find the value of λ	is a real constant, find the value of λ
	$\lambda = 6$

Worked example	Your turn
The complex numbers w and z are given by $w = k - i$ and $z = 3 - 5ki$, where k is a real constant. Given that $\arg(w + z) = \frac{\pi}{3}$, find the exact value of k	The complex numbers w and z are given by w = k + i and $z = -4 + 5ki$, where k is a real constant. Given that $\arg(w + z) = \frac{2\pi}{3}$, find the exact value of k

$$k = \frac{21\sqrt{3} - 17}{22}$$

Worked example	Your turn
The complex numbers w and z are defined such that $\arg w = \frac{\pi}{20}$, $ w = 3$ and $\arg z = \frac{7\pi}{20}$.	The complex numbers w and z are defined such that $\arg w = \frac{\pi}{10}$, $ w = 5$ and $\arg z = \frac{2\pi}{5}$.
Given that $\arg(w + 2) = \frac{1}{4}$, find the value of $ 2 $	Given that $\arg(w + 2) = \frac{1}{5}$, find the value of $ 2 $
	2.63 (3 sf)

2.3) Modulus-argument form of complex numbers

Chapter CONTENTS

Worked example	Your turn
Express $z = -1 + i$ in the form $r(\cos \theta + i \sin \theta)$ where $-\pi < \theta \le \pi$	Express $z = -1 - i$ in the form $r(\cos \theta + i \sin \theta)$ where $-\pi < \theta \le \pi$
	$r = \sqrt{2} \left(\cos \left(-\frac{3\pi}{4} \right) + i \sin \left(-\frac{3\pi}{4} \right) \right)$

Worked example	Your turn
Express $z = -\sqrt{3} + i$ in the form $r(\cos \theta + i \sin \theta)$ where $-\pi < \theta \le \pi$	Express $z = -1 - \sqrt{3} i$ in the form $r(\cos \theta + i \sin \theta)$ where $-\pi < \theta \le \pi$
	$r = 2\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right)$

Worked example	Your turn
The complex number z is such that $ z = 3$ and $\arg z = \frac{\pi}{4}$. Find z in the form $a + bi$, where a and b are exact real numbers to be found.	The complex number z is such that $ z = 5$ and $\arg z = \frac{3\pi}{4}$. Find z in the form $a + bi$, where a and b are exact real numbers to be found.
	$a = -\frac{5\sqrt{2}}{2}$, $b = \frac{5\sqrt{2}}{2}$

The complex number z is such that |z| = 4 and $\arg z = -\frac{3\pi}{4}$. Find z in the form a + bi, where a and b are exact real numbers to be found.

Worked example
$$z_1 = 6(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12})$$
 $z_1 = z_1 = z_2 = 3(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4})$ $z_2 = 3(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4})$ $z_2 = z_2 = z_$

 $= 8(\cos\frac{7\pi}{10} + i\sin\frac{7\pi}{10}) \\= 4(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5})$ 32) $-\frac{\pi}{2}$ the form $r(\cos\theta + i\sin\theta)$ $\left(\cos\left(-\frac{\pi}{2}\right)+i\sin\left(-\frac{\pi}{2}\right)\right)$ the form x + iy-32i

Your turn

Worked example

$$z_{1} = 6\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$$

$$z_{2} = 3\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
Find:
i) $\left|\frac{z_{1}}{z_{2}}\right|$
ii) $\arg\left(\frac{z_{1}}{z_{2}}\right)$
iii) $\frac{z_{1}}{z_{2}}$ in the form $r\left(\cos\theta + i\sin\theta\right)$
iv) $\frac{z_{1}}{z_{2}}$ in the form $x + iy$

Your turn

$$z_{1} = 8\left(\cos\frac{7\pi}{10} + i\sin\frac{7\pi}{10}\right)$$

$$z_{2} = 4\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$$
Find:
i) $\left|\frac{z_{1}}{z_{2}}\right|$
2
ii) $\arg(\frac{z_{1}}{z_{2}})$

$$-\frac{\pi}{10}$$
iii) $\frac{z_{1}}{z_{2}}$ in the form $r(\cos\theta + i\sin\theta)$

$$2\left(\cos\left(-\frac{\pi}{10}\right) + i\sin(-\frac{\pi}{10})\right)$$
iv) $\frac{z_{1}}{z_{2}}$ in the form $x + iy$

$$1.90 - 0.618i$$

Worked exampleYour turn
$$z_1 = 6(\cos \frac{5\pi}{12} - i \sin \frac{5\pi}{12})$$

 $z_2 = 3(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4})$ $z_1 = 8(\cos \frac{7\pi}{10} + i \sin \frac{7\pi}{10})$
 $z_2 = 4(\cos \frac{4\pi}{5} - i \sin \frac{4\pi}{5})$ Find:
 $i) |z_1 z_2|$ Find:
 $i) |z_1 z_2|$ 32 ii) $\arg(z_1 z_2)$ ii) $\arg(z_1 z_2) - \frac{\pi}{10}$ iii) $z_1 z_2$ in the form $r(\cos \theta + i \sin \theta)$ iii) $z_1 z_2$ in the form $r(\cos \theta + i \sin \theta)$ $32\left(\cos\left(-\frac{\pi}{10}\right) + i \sin(-\frac{\pi}{10})\right)$ iv) $z_1 z_2$ in the form $x + iy$ iv) $z_1 z_2$ in the form $x + iy$

i)

ii)

2.4) Loci in the Argand diagram

Worked example	Your turn
Sketch the locus of points represented by $ z = 3$	Sketch the locus of points represented by $ z = 5$
	Circle centre $(0, 0)$ radius 5 Cartesian equation: $x^2 + y^2 = 25$
z = 4	

Worked example	Your turn
Sketch the locus of points represented by z + 3 - 5i = 2 and find its Cartesian equation	Draw the locus of points that satisfy: z - 5 - 3i = 6 and find its Cartesian equation
	Circle centre (5, 3) radius 6 $(x - 5)^2 + (y - 3)^2 = 36$
Sketch the locus of points represented by $ z - 3 + 5i = 4$ and find its Cartesian equation	

Worked example	Your turn
Sketch the locus of points represented by $ 3 - z = 5$	Draw the locus of points that satisfy: 3 - 2i - z = 3
and find its Cartesian equation	and find its Cartesian equation
	Circle centre $(3, -2)$ radius 3 $(x - 2)^2 + (y + 2)^2 = 9$
Sketch the locus of points represented by 2i - z = 4 and find its Cartesian equation	
Sketch the locus of points represented by 2 - 3i - z = 2 and find its Cartesian equation	

Worked example	Your turn
A complex number <i>z</i> is represented by the point <i>P</i> . Given that $ z - 3 + 5i = 2$ (a) Sketch the locus of <i>P</i> (b) Find the Cartesian equation of the locus. (c) Find the maximum value of arg <i>z</i> in the interval $(-\pi, \pi)$ (d) Find the minimum and maximum values of $ z $	 A complex number z is represented by the point P. Given that z - 5 - 3i = 3 (a) Sketch the locus of P (b) Find the Cartesian equation of the locus (c) Find the maximum value of arg z in the interval (-π, π) (d) Find the minimum and maximum values of z
	(a) Circle centre (5, 3) radius 3 (b) $(x - 5)^2 + (y - 3)^2 = 36$ (c) 1.08 (3 sf) (d) Max $ z = \sqrt{34} + 3$ Min $ z = \sqrt{34} - 3$

Worked example	
Sketch the locus of points represented by $ z = z + 4i $	Sketch the lo
and find its Cartesian equation	and find its C
	Perpendic
Sketch the locus of points represented by $ z = z - 5 $	
and find its Cartesian equation	

Your turn he locus of points represented by |z| = |z - 6i|

and find its Cartesian equation

Perpendicular bisector of (0, 0) and (0, 6)y = 3

Worked example	Your turn
Sketch the locus of points represented by $ z - 3i = z + 1 $ and find its Cartesian equation	Sketch the locus of points represented by $ z - 3 = z + i $ and find its Cartesian equation
	Perpendicular bisector of $(3, 0)$ and $(0, -1)$ y = -3x + 4

Worked example	Your turn
Find the Cartesian equation of the locus of z if z - 3i = z + 1 and sketch the locus of z on an Argand diagram. Hence, find the least possible value of $ z $.	Find the Cartesian equation of the locus of z if $ z - 3 = z + i $, and sketch the locus of z on an Argand diagram. Hence, find the least possible value of $ z $.
	$\frac{2\sqrt{10}}{5}$

Worked example	Your turn
Given that the complex number z satisfies the equation $ z - 8 + 6i = 5$, find the minimum value of $ z $ and the maximum.	Given that the complex number z satisfies the equation $ z - 12 - 5i = 3$, find the minimum value of $ z $ and the maximum.
	Minimum = 10 Maximum = 16

Worked example Your turn Sketch the locus of points represented by Sketch the locus of points represented by $\arg(z) = \frac{\pi}{\Lambda}$ $\arg(z) = \frac{\pi}{2}$ and find its Cartesian equation and find its Cartesian equation Half-line from origin (0, 0) $y = \frac{1}{\sqrt{3}}x, \qquad x > 0, y > 0$ Sketch the locus of points represented by $\arg(z) = \frac{\pi}{3}$ and find its Cartesian equation

Worked example	Your turn
Sketch the locus of points represented by $\arg(z - 2 + 3i) = \frac{\pi}{4}$	Sketch the locus of points represented by $\arg(z + 3 + 2i) = \frac{3\pi}{4}$
and find its Cartesian equation	and find its Cartesian equation Half-line from $(-3, -2)$ y = -x - 5, $x < -3$, $y > -2$

Worked example	Your turn
Find the complex number <i>z</i> which satisfies both $ z + 3 - 2i = 50$ and $arg(z + 3 - 2i) = \frac{\pi}{4}$	Find the complex number z which satisfies both $ z + 3 + 2i = 10$ and $\arg(z + 3 + 2i) = \frac{3\pi}{4}$
	$z = (-3 - 5\sqrt{2}) + i(-2 + 5\sqrt{2})$

Worked example	Your turn
If the complex number z satisfies both arg $z = \frac{\pi}{4}$ and $\arg(z - 3) = \frac{\pi}{2}$, (a) Find the value of z (b) Hence, find $\arg(z - 6)$	If the complex number z satisfies both $\arg z = \frac{\pi}{3}$ and $\arg(z - 4) = \frac{\pi}{2}$, (a) Find the value of z (b) Hence, find $\arg(z - 8)$ (a) $z = 4 + 4\sqrt{3}i$ (b) $\frac{2\pi}{3}$

Worked example	Your turn
Given $ z + 4 - 8i = 3$, show that the maximum value of $\arg(z + 12 - 5i)$ in the interval $(-\pi, \pi)$ is $2 \arcsin\left(\frac{3}{\sqrt{73}}\right)$	Given $ z + 8 - 4i = 2$, show that the maximum value of $\arg(z + 15 - 2i)$ in the interval $(-\pi, \pi)$ is $2 \arcsin\left(\frac{2}{\sqrt{53}}\right)$
	Shown

2.5) Regions in the Argand diagram Chapter CONTENTS

Worked example	Your turn
On an Argand diagram, shade the region for which $ z-3+5i \le 4$	On an Argand diagram, shade the region for which $ z + 3 - 5i \le 2$ Inside of solid-lined circle, centre (3, -5), radius 2

Worked example	Your turn
On an Argand diagram, shade the region for which	On an Argand diagram, shade the region for which
$2 \le z - 3 + 5i \le 4$	$2 \le z + 3 - 5i < 4$
$2 < z - 3 - 5i \le 4$	Region enclosed between two circles. One solid-lined circle centred (-3, 5) radius 2 One dotted-lined circle centred (-3, 5) radius 4

Worked example	Your turn
On an Argand diagram, shade the region for which	On an Argand diagram, shade the region for which
<i>z</i> − 3 < <i>z</i> − 5	z + 3 < z - 5i Dotted line perpendicular bisector of (-3,0) and (0,5). Shaded below the line
z - 3i > z + 5	

Worked example	Your turn
On an Argand diagram, shade the region for which $\{z \in \mathbb{C} : z - 4 \le z - 8 - 6i \} \cap \{z \in \mathbb{C} : 0 \le \arg(z - 2 - 4i) \le \frac{\pi}{4}\}$	On an Argand diagram, shade the region for which $\{z \in \mathbb{C} : z - 2 \le z - 6 - 8i \} \cap \{z \in \mathbb{C} : 0 \le \arg(z - 4 - 2i) \le \frac{\pi}{2}\}$ Shaded region in first quadrant enclosed by half lines $x = 4$ and $y = 2$ both extending from (4, 2) and perpendicular bisector of (2, 0) and (6, 8) $y = -\frac{1}{2}x + 6$

Worked example	Your turn
On an Argand diagram, shade the region for which	On an Argand diagram, shade the region for which
$0 \le \arg(z - 3 - 5i) \le \frac{\pi}{4}$	$0 \le \arg(z+3-5i) \le \frac{\pi}{3}$
	Shaded between two solid half-lines. First half-line horizontal from point $(3, -5)$ in 4 th quadrant only Second half-line from point $(3, -5)$ at angle of $\frac{\pi}{3}$ to the horizontal
$\arg(z-3+5i) > \frac{\pi}{2}$	