Applications of De'Moivre's Theorem 2: Roots

De Moivre's theorem also holds true for rational powers. We can use De Moivre's to solve equations of the form $z^{n}=w$, where $z, w \in C$. This is equivalent to finding the nth roots of w

The fundamental theorem of algebra holds true for complex numbers:
Hence $z^{n}=w$, where $z, w \in \mathrm{C}$ has n distinct roots.
If $w=1$ we call these roots of unity.
To find the roots of a complex equation we use the fact that the argument of a complex number is not unique:

If $z^{n}=r^{n}(\operatorname{cosn} \theta+i \operatorname{sinn} \theta)$ then $z=r(\cos (\theta+2 K \pi)+i \sin (\theta+2 k \pi))$

Roots of Unity Example

Solve $z^{3}=1$
Method 1: By factorising
Method 2: De Moivre's

Notice:

- The first root will always be 1 since $1^{n}=1$
- We add $\frac{2 k \pi}{n}$ to the argument but leave the modulus unchanged e.g. when $n=3$ we rotate the line $\frac{2 \pi}{3}$ each time. When $k=n$ we have rotated $\frac{2 \pi n}{n}=2 \pi$ so we get back to where we started.
- The first root is $z_{1}=1$, call the second root $z_{2}=\omega$. Then...
$\omega=r\left(\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)\right) \quad r=1$

Consider $\omega^{2}=$

$$
=
$$

$$
=
$$

What do you notice?

What would z_{3} be?

The roots of $z^{n}=1$ can be represented as $1, \omega, \omega^{2}$, where $\omega=e^{\frac{2 \pi i}{n}}$. Since the resultant 'vector' is 0 , then $1+\omega+\omega^{2}=0$

These roots form the vertices of a regular n-gon and all lie on a circle, radius r.

General nth Roots: $z^{n}=w, w \neq 1$

We can use a similar method when w is not equal to 1 . Again, our first step is to write w in mod-arg form and consider multiples of the argument.

Example

Solve $z^{4}=2+2 \sqrt{3} i$

Test your understanding

a) Express the complex number $-2+(2 \sqrt{3})$ i in the form $r(\cos \theta+i \sin \theta),-\pi<\theta \leq$ π.
b) Solve the equation

$$
\mathrm{z}^{4}=-2+(2 \sqrt{3}) \mathrm{i}
$$

giving the roots in the form $r(\cos \theta+i \sin \theta),-\pi<\theta \leq \pi$. (5)

