1.5) Solving cubic and quartic equations

Given that -2 is a root of the cubic equation

$$
z^{3}-2 z^{2}-3 z+k=0
$$

(a) Find the value of k
(b) Find the other two roots

Given that -1 is a root of the cubic equation

$$
z^{3}-z^{2}+3 z+k=0
$$

(a) Find the value of k
(b) Find the other two roots
(a) $k=5$
(b) $1+2 i$ and $1-2 i$

Given that $3+i$ is a root of the quartic equation
$2 z^{4}-37 z^{3}+221 z^{2}-380 z-250=0$, solve the equation completely.

Given that $3+i$ is a root of the quartic equation
$2 z^{4}-3 z^{3}-39 z^{2}+120 z-50=0$, solve the equation completely.

$$
\begin{aligned}
z_{1} & =-5 \\
z_{2} & =\frac{1}{2} \\
z_{3} & =3+i \\
z_{4} & =3-i
\end{aligned}
$$

Show that $z^{2}+9$ is a factor of

$$
z^{4}-8 z^{3}+26 z^{2}-72 z+153
$$

Hence solve the equation

$$
z^{4}-8 z^{3}+26 z^{2}-72 z+153=0
$$

Show that $z^{2}+4$ is a factor of

$$
z^{4}-2 z^{3}+21 z^{2}-8 z+68
$$

Hence solve the equation

$$
z^{4}-2 z^{3}+21 z^{2}-8 z+68=0
$$

$$
z_{1}=2 i
$$

$$
z_{2}=-2 i
$$

$$
z_{3}=1+4 i
$$

$$
z_{4}=1-4 i
$$

Given that 5 and $4+3 i$ are roots of the equation

$$
x^{3}-13 x^{2}+c x+d=0 \quad c, d \in \mathbb{R}
$$

(a) Write down the other complex root
(b) Find the value of c and the value of d

Given that 2 and $5+2 i$ are roots of the equation

$$
x^{3}-12 x^{2}+c x+d=0 \quad c, d \in \mathbb{R}
$$

(a) Write down the other complex root
(b) Find the value of c and the value of d
(a) $5-2 i$
(b) $c=49, d=-58$

Solve:

$$
z^{4}=81
$$

$z_{1}=3$
$z_{2}=-3$
$z_{3}=3 i$
$z_{4}=1-4 i$

Your turn

$$
f(z)=z^{3}+4 z^{2}+k z+36, k \in \mathbb{R}
$$

Given that $f(3 i)=0$, find the value of k and the other two roots of the equation

$$
f(z)=z^{3}+3 z^{2}+k z+48, k \in \mathbb{R}
$$

Given that $f(4 i)=0$, find the value of k and the other two roots of the equation

$$
k=16
$$

$$
-4 i \text { and }-3
$$

Your turn

Find the square root of $3+4 i$
Find the square root of $5+12 i$

$$
3-2 i,-3+2 i
$$

