The convergent infinite series $C$ and $S$ are defined as

$$
\begin{gathered}
C=1+\frac{1}{5} \cos \theta+\frac{1}{25} \cos 2 \theta+\frac{1}{125} \cos 3 \theta+\cdots \\
S=\frac{1}{5} \sin \theta+\frac{1}{25} \sin 2 \theta+\frac{1}{125} \sin 3 \theta+\cdots
\end{gathered}
$$

a) Find an expression for $C+i S$
b) Hence find an expression for C and S

The convergent infinite series $C$ and $S$ are defined as

$$
\begin{gathered}
C=1+\frac{1}{3} \cos \theta+\frac{1}{9} \cos 2 \theta+\frac{1}{27} \cos 3 \theta+\cdots \\
S=\frac{1}{3} \sin \theta+\frac{1}{9} \sin 2 \theta+\frac{1}{27} \sin 3 \theta+\cdots
\end{gathered}
$$

a) Find an expression for $C+i S$
b) Hence find an expression for C and S
a) $C+i S=\frac{3}{3-e^{i \theta}}$
b) $C=\frac{9-3 \cos \theta}{10-6 \cos \theta}$

$$
S=\frac{3 \sin \theta}{10-6 \cos \theta}
$$

## Your turn

The convergent infinite series $C$ and $S$ are defined as

$$
\begin{gathered}
C=1-\frac{1}{3} \cos \theta+\frac{1}{9} \cos 2 \theta-\frac{1}{27} \cos 3 \theta+\cdots \\
S=\frac{1}{3} \sin \theta-\frac{1}{9} \sin 2 \theta+\frac{1}{27} \sin 3 \theta+\cdots
\end{gathered}
$$

By considering $C-i S$, show that $C=\frac{9+3 \cos \theta}{10+6 \cos \theta}$ and write down the corresponding expression for $S$

The convergent infinite series $C$ and $S$ are defined as

$$
\begin{gathered}
C=1-\frac{1}{2} \cos \theta+\frac{1}{4} \cos 2 \theta-\frac{1}{8} \cos 3 \theta+\cdots \\
S=\frac{1}{2} \sin \theta-\frac{1}{4} \sin 2 \theta+\frac{1}{8} \sin 3 \theta+\cdots
\end{gathered}
$$

By considering $C-i S$, show that $C=\frac{4+2 \cos \theta}{5+4 \cos \theta}$ and write down the corresponding expression for $S$

$$
S=\frac{\begin{array}{c}
\text { Shown } \\
2 \sin \theta \\
5+4 \cos \theta
\end{array}}{\text { 信 }}
$$

